Skip header and navigation

2 records – page 1 of 1.

From the Tunnels into the Treetops: New Lineages of Black Yeasts from Biofilm in the Stockholm Metro System and Their Relatives among Ant-Associated Fungi in the Chaetothyriales.

https://arctichealth.org/en/permalink/ahliterature282622
Source
PLoS One. 2016;11(10):e0163396
Publication Type
Article
Date
2016
Author
Martina Réblová
Vit Hubka
Olle Thureborn
Johannes Lundberg
Therese Sallstedt
Mats Wedin
Magnus Ivarsson
Source
PLoS One. 2016;11(10):e0163396
Date
2016
Language
English
Publication Type
Article
Keywords
Animals
Ants - microbiology
Ascomycota - classification - genetics - physiology
Base Sequence
Bayes Theorem
Biofilms
DNA, Fungal - chemistry - isolation & purification - metabolism
DNA, Ribosomal - chemistry - isolation & purification - metabolism
Fungal Proteins - genetics
Nucleic Acid Conformation
Phylogeny
RNA Polymerase II - genetics
Sequence Alignment
Sweden
Tubulin - genetics
Abstract
Rock-inhabiting fungi harbour species-rich, poorly differentiated, extremophilic taxa of polyphyletic origin. Their closest relatives are often well-known species from various biotopes with significant pathogenic potential. Speleothems represent a unique rock-dwelling habitat, whose mycobiota are largely unexplored. Isolation of fungi from speleothem biofilm covering bare granite walls in the Kungstr?dg?rden metro station in Stockholm yielded axenic cultures of two distinct black yeast morphotypes. Phylogenetic analyses of DNA sequences from six nuclear loci, ITS, nuc18S and nuc28S rDNA, rpb1, rpb2 and ?-tubulin, support their placement in the Chaetothyriales (Ascomycota). They are described as a new genus Bacillicladium with the type species B. lobatum, and a new species Bradymyces graniticola. Bacillicladium is distantly related to the known five chaetothyrialean families and is unique in the Chaetothyriales by variable morphology showing hyphal, meristematic and yeast-like growth in vitro. The nearest relatives of Bacillicladium are recruited among fungi isolated from cardboard-like construction material produced by arboricolous non-attine ants. Their sister relationship is weakly supported by the Maximum likelihood analysis, but strongly supported by Bayesian inference. The genus Bradymyces is placed amidst members of the Trichomeriaceae and is ecologically undefined; it includes an opportunistic animal pathogen while two other species inhabit rock surfaces. ITS rDNA sequences of three species accepted in Bradymyces and other undescribed species and environmental samples were subjected to phylogenetic analysis and in-depth comparative analysis of ITS1 and ITS2 secondary structures in order to study their intraspecific variability. Compensatory base change criterion in the ITS2 secondary structure supported delimitation of species in Bradymyces, which manifest a limited number of phenotypic features useful for species recognition. The role of fungi in the speleothem biofilm and relationships of Bacillicladium and Bradymyces with other members of the Chaetothyriales are discussed.
Notes
Cites: Bioinformatics. 2006 Nov 1;22(21):2688-9016928733
Cites: Nucleic Acids Res. 1999 Dec 1;27(23):4533-4010556307
Cites: Biodegradation. 2004 Feb;15(1):59-6514971858
Cites: PLoS Pathog. 2015 Jul 30;11(7):e100498226226483
Cites: Mycol Res. 2007 Oct;111(Pt 10):1145-6817981450
Cites: Mycologia. 2006 Nov-Dec;98(6):1053-6417486980
Cites: Geomicrobiol J. 2016 Mar 15;33(3-4):308-31727019541
Cites: Stud Mycol. 2008;61:131-619287535
Cites: J Bacteriol. 1990 Aug;172(8):4238-462376561
Cites: J Mol Evol. 2002 Feb;54(2):246-5711821917
Cites: RNA. 2007 Sep;13(9):1469-7217652131
Cites: Nucleic Acids Res. 1993 Jul 1;21(13):3055-748332527
Cites: Proc Biol Sci. 2012 Oct 7;279(1744):3940-722859596
Cites: IMA Fungus. 2014 Jun;5(1):7-1525083402
Cites: Mycologia. 2015 Jan-Feb;107(1):169-20825344259
Cites: Bioinformatics. 2012 Oct 15;28(20):2691-222877864
Cites: PLoS One. 2013 May 28;8(5):e6354723723988
Cites: Science. 1982 Feb 26;215(4536):1093-517771840
Cites: Biofouling. 2016 Jul;32(6):657-6927192622
Cites: Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6241-622454494
Cites: Stud Mycol. 2008;61:111-919287533
Cites: Mol Ecol Resour. 2011 Nov;11(6):1002-1121689384
Cites: J Mol Evol. 1997 Mar;44(3):258-719060392
Cites: Microb Ecol. 2010 Jul;60(1):149-5620333373
Cites: Mycoses. 1998 May-Jun;41(5-6):183-99715630
Cites: Appl Microbiol Biotechnol. 2011 May;90(4):1219-2721465305
Cites: Trends Genet. 2003 Jul;19(7):370-512850441
Cites: Antonie Van Leeuwenhoek. 1997 Nov;72(4):349-639442275
Cites: Antonie Van Leeuwenhoek. 1997 Mar;71(3):281-89111924
Cites: Fungal Biol. 2011 Oct;115(10):1077-9121944219
Cites: Persoonia. 2009 Dec;23:35-4020198159
Cites: Biocontrol Sci. 2010 Sep;15(3):111-520938096
Cites: J Mol Evol. 1997 Aug;45(2):168-779236277
Cites: Appl Biochem Biotechnol. 2015 May;176(2):563-7125864184
Cites: Persoonia. 2009 Jun;22:139-6120198145
Cites: Mol Phylogenet Evol. 2007 Jul;44(1):412-2617207641
Cites: Persoonia. 2008 Dec;21:93-11020396580
Cites: Nucleic Acids Res. 1993 Jul 1;21(13):3051-48332526
Cites: Microbiol Rev. 1994 Mar;58(1):10-268177168
Cites: Med Mycol. 2014 Aug;52(6):565-7624951723
Cites: Proc Natl Acad Sci U S A. 2008 Jan 22;105(3):940-318195358
Cites: Nucleic Acids Res. 2002 Aug 15;30(16):3497-53112177293
Cites: FEMS Microbiol Rev. 2006 Jan;30(1):109-3016438682
Cites: Appl Microbiol Biotechnol. 2013 Nov;97(22):9637-4624100684
Cites: Stud Mycol. 2007;58:185-21718491000
Cites: Bioinformatics. 2009 Aug 1;25(15):1974-519398448
Cites: Persoonia. 2015 Dec;35:264-32726823636
Cites: Acta Biochim Pol. 2006;53(3):463-7317019438
Cites: Appl Environ Microbiol. 2005 Nov;71(11):7626-916269819
Cites: Mycol Res. 2006 Mar;110(Pt 3):264-7516483752
Cites: Bioinformatics. 2005 Feb 15;21(4):456-6315608047
Cites: Persoonia. 2015 Jun;34:167-26626240451
Cites: Bioinformatics. 2001 Aug;17(8):754-511524383
Cites: Antonie Van Leeuwenhoek. 2014 Nov;106(5):979-9225164483
Cites: Appl Environ Microbiol. 2000 Oct;66(10):4356-6011010882
Cites: Stud Mycol. 2008;61:137-4419287536
Cites: Med Mycol. 2010 Jun;48(4):622-820392154
Cites: Persoonia. 2014 Jun;32:184-30625264390
Cites: PLoS One. 2014 Nov 14;9(11):e11275625398091
Cites: Fungal Biol. 2016 Feb;120(2):207-1826781377
Cites: Protist. 2000 May;151(1):1-910896128
Cites: Proc Biol Sci. 2009 Sep 22;276(1671):3265-7319556257
Cites: Polarforschung. 1988;58(2-3):189-9111538354
Cites: Mol Biotechnol. 1996 Jun;5(3):233-418837029
Cites: New Phytol. 2009 Jun;182(4):942-919383109
Cites: Nucleic Acids Res. 2007;35(10):3322-917459886
Cites: Nucleic Acids Res. 2003 Jul 1;31(13):3406-1512824337
Cites: Stud Mycol. 2009;64:123-133S720169026
PubMed ID
27732675 View in PubMed
Less detail

Metagenomic Analysis from the Interior of a Speleothem in Tjuv-Ante's Cave, Northern Sweden.

https://arctichealth.org/en/permalink/ahliterature274797
Source
PLoS One. 2016;11(3):e0151577
Publication Type
Article
Date
2016
Author
Marie Lisandra Zepeda Mendoza
Johannes Lundberg
Magnus Ivarsson
Paula Campos
Johan A A Nylander
Therese Sallstedt
Love Dalen
Source
PLoS One. 2016;11(3):e0151577
Date
2016
Language
English
Publication Type
Article
Keywords
Actinobacteria - genetics
Biodiversity
Caves - microbiology
Metagenome
Metagenomics
Sweden
Abstract
Speleothems are secondary mineral deposits normally formed by water supersaturated with calcium carbonate percolating into underground caves, and are often associated with low-nutrient and mostly non-phototrophic conditions. Tjuv-Ante's cave is a shallow-depth cave formed by the action of waves, with granite and dolerite as major components, and opal-A and calcite as part of the speleothems, making it a rare kind of cave. We generated two DNA shotgun sequencing metagenomic datasets from the interior of a speleothem from Tjuv-Ante's cave representing areas of old and relatively recent speleothem formation. We used these datasets to perform i) an evaluation of the use of these speleothems as past biodiversity archives, ii) functional and taxonomic profiling of the speleothem's different formation periods, and iii) taxonomic comparison of the metagenomic results to previous microscopic analyses from a nearby speleothem of the same cave. Our analyses confirm the abundance of Actinobacteria and fungi as previously reported by microscopic analyses on this cave, however we also discovered a larger biodiversity. Interestingly, we identified photosynthetic genes, as well as genes related to iron and sulphur metabolism, suggesting the presence of chemoautotrophs. Furthermore, we identified taxa and functions related to biomineralization. However, we could not confidently establish the use of this type of speleothems as biological paleoarchives due to the potential leaching from the outside of the cave and the DNA damage that we propose has been caused by the fungal chemical etching.
Notes
Cites: Appl Environ Microbiol. 2006 Jul;72(7):5069-7216820507
Cites: Genome Biol. 2012;13(12):R12223259615
Cites: Protist. 2007 Jul;158(3):325-3617576099
Cites: Appl Environ Microbiol. 1989 Oct;55(10):2499-5042604392
Cites: Nucleic Acids Res. 1996 Apr 1;24(7):1304-78614634
Cites: J Antibiot (Tokyo). 1998 Aug;51(8):699-7079766461
Cites: Int J Syst Bacteriol. 1999 Jul;49 Pt 3:1053-7310425763
Cites: Nucleic Acids Res. 2005 Jan 1;33(Database issue):D294-615608200
Cites: Mol Microbiol. 2005 Jun;56(5):1386-9515882428
Cites: Int Microbiol. 2005 Sep;8(3):189-9416200497
Cites: FEMS Microbiol Rev. 2000 Oct;24(4):335-6610978542
Cites: Water Sci Technol. 2001;43(6):77-8611381975
Cites: Nucleic Acids Res. 2001 Dec 1;29(23):4793-911726688
Cites: Appl Environ Microbiol. 2003 Apr;69(4):2182-9312676699
Cites: Science. 2003 May 2;300(5620):791-512702808
Cites: Clin Chem. 2004 Jan;50(1):88-9214709639
Cites: Appl Environ Microbiol. 2004 Mar;70(3):1627-3215006787
Cites: Int J Syst Evol Microbiol. 2004 May;54(Pt 3):857-6415143036
Cites: Appl Environ Microbiol. 2004 Sep;70(9):5595-60215345448
Cites: J Bacteriol. 1970 Oct;104(1):462-725473903
Cites: J Bacteriol. 1979 Jan;137(1):524-30216663
Cites: Trends Biotechnol. 2006 Jun;24(6):255-6016647149
Cites: Science. 2007 Jul 6;317(5834):111-417615355
Cites: Anim Genet. 2007 Aug;38(4):378-8317596126
Cites: Appl Environ Microbiol. 2007 Oct;73(19):6172-8017693567
Cites: J Biotechnol. 2008 Mar 20;134(1-2):33-4518304669
Cites: Pak J Pharm Sci. 2010 Jan;23(1):1-620067859
Cites: Cold Spring Harb Protoc. 2010 Jan;2010(1):pdb.prot536820150127
Cites: BMC Bioinformatics. 2010;11:11920211023
Cites: Nat Methods. 2010 May;7(5):335-620383131
Cites: Cold Spring Harb Protoc. 2010 Jun;2010(6):pdb.prot544820516186
Cites: Photosynth Res. 2010 Jun;104(2-3):245-5520130996
Cites: Bioinformatics. 2010 Oct 1;26(19):2460-120709691
Cites: Nucleic Acids Res. 2010 Nov;38(20):e19120805240
Cites: Chemosphere. 2011 Jun;83(11):1560-721316734
Cites: Water Res. 2011 May;45(11):3512-2021536315
Cites: FEMS Microbiol Lett. 2012 Jan;326(1):47-5422092362
Cites: J Bacteriol. 2012 May;194(10):2752-322535935
Cites: PLoS One. 2012;7(10):e4765623082188
Cites: Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20532-623185018
Cites: Nucleic Acids Res. 2013 Jan;41(Database issue):D590-623193283
Cites: Microb Ecol. 2013 Feb;65(2):371-8323224253
Cites: Bioinformatics. 2013 Jul 1;29(13):1682-423613487
Cites: ISME J. 2013 Sep;7(9):1775-8923575369
Cites: Methods Enzymol. 2013;531:465-8524060133
Cites: ISME J. 2014 Feb;8(2):478-9124030597
Cites: Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2229-3424469802
Cites: Mol Biol Evol. 2007 Apr;24(4):998-100417255122
PubMed ID
26985997 View in PubMed
Less detail