Skip header and navigation

Refine By

20 records – page 1 of 2.

Adjustable maintenance dosing with budesonide/formoterol reduces asthma exacerbations compared with traditional fixed dosing: a five-month multicentre Canadian study.

https://arctichealth.org/en/permalink/ahliterature9564
Source
Can Respir J. 2003 Nov-Dec;10(8):427-34
Publication Type
Article
Author
J Mark FitzGerald
Malcolm R Sears
Louis-Philippe Boulet
Allan B Becker
Andrew R McIvor
Pierre Ernst
Natasha M Smiljanic-Georgijev
Joanna S M Lee
Author Affiliation
The University of British Columbia, Vancouver, Canada. markj@interchange.ubc.ca
Source
Can Respir J. 2003 Nov-Dec;10(8):427-34
Language
English
Publication Type
Article
Keywords
Administration, Inhalation
Adrenal Cortex Hormones - administration & dosage - therapeutic use
Adult
Asthma - drug therapy
Bronchodilator Agents - administration & dosage - therapeutic use
Budesonide - administration & dosage - therapeutic use
Canada
Child
Costs and Cost Analysis
Drug Administration Schedule
Drug Combinations
Ethanolamines - administration & dosage - therapeutic use
Female
Humans
Male
Research Support, Non-U.S. Gov't
Time Factors
Abstract
BACKGROUND: Adjustable maintenance dosing with budesonide/formoterol in a single inhaler (Symbicort, AstraZeneca, Lund, Sweden) may provide a convenient means of maintaining asthma control with the minimum effective medication level. OBJECTIVES: To compare adjustable and fixed maintenance dosing regimens of budesonide/formoterol in asthma. METHODS: This was an open-label, randomized, parallel-group, multicentre, Canadian study of asthma patients (aged 12 years or older, postbronchodilator forced expiratory volume in 1 s 70% or greater of predicted normal). Following a one-month run-in on budesonide/formoterol (100/6 mg or 200/6 mg metered doses, two inhalations twice daily), 995 patients were randomly assigned either to continue on this fixed dosing regimen or to receive budesonide/formoterol adjustable dosing (step down to one inhalation twice daily if symptoms were controlled or temporarily step up to four inhalations twice daily for seven or 14 days if asthma worsened). The primary efficacy variable was the occurrence of exacerbations (requiring oral or inhaled corticosteroids, emergency department treatment, serious adverse events or added maintenance therapy because of asthma). RESULTS: With adjustable dosing, significantly fewer patients experienced exacerbations compared with fixed dosing (4.0% versus 8.9%, P=0.002; number needed to treat=21 [95% CI 13 to 59]). Patients required 36% fewer overall doses of budesonide/formoterol (2.5 versus 3.9 inhalations/day, P
PubMed ID
14679407 View in PubMed
Less detail

Airflow obstruction in young adults in Canada.

https://arctichealth.org/en/permalink/ahliterature163160
Source
Can Respir J. 2007 May-Jun;14(4):221-7
Publication Type
Article
Author
Manal Al-Hazmi
Kate Wooldrage
Nicholas R Anthonisen
Margaret R Becklake
Dennis Bowie
Moira Chan-Yeung
Helen Dimich-Ward
Pierre Ernst
Jure Manfreda
Malcolm R Sears
Hans C Siersted
Lamont Sweet
Linda Van Til
Author Affiliation
University of Manitoba, Winnipeg, Manitoba.
Source
Can Respir J. 2007 May-Jun;14(4):221-7
Language
English
Publication Type
Article
Keywords
Adult
Age Distribution
Asthma - complications
Canada - epidemiology
Female
Health Surveys
Humans
Immunoglobulin E - blood
Lung Diseases, Obstructive - blood - epidemiology - physiopathology
Male
Respiratory Function Tests
Risk factors
Sex Distribution
Smoking - adverse effects
Abstract
Airflow obstruction is relatively uncommon in young adults, and may indicate potential for the development of progressive disease. The objective of the present study was to enumerate and characterize airflow obstruction in a random sample of Canadians aged 20 to 44 years.
The sample (n=2962) was drawn from six Canadian sites.
A prevalence study using the European Community Respiratory Health Survey protocol was conducted. Airflow obstruction was assessed by spirometry. Bronchial responsiveness, skin reactivity to allergens and total serum immunoglobulin E were also measured. Logistic regression was used for analysis.
Airflow obstruction was observed in 6.4% of the sample, not associated with sex or age. The risk of airflow obstruction increased in patients who had smoked and in patients who had lung trouble during childhood. Adjusted for smoking, the risk of airflow obstruction was elevated for subjects with past and current asthma, skin reactivity to allergens, elevated levels of total immunoglobulin E and bronchial hyper-responsiveness. Of the subjects with airflow obstruction, 21% were smokers with a history of asthma, 50% were smokers without asthma, 12% were nonsmokers with asthma and 17% were nonsmokers with no history of asthma. Bronchial hyper-responsiveness increased the prevalence of airflow obstruction in each of these groups.
Smoking and asthma, jointly and individually, are major determinants of obstructive disorders in young adults. Bronchial hyper-responsiveness contributes to obstruction in both groups.
Notes
Cites: CMAJ. 2001 Apr 3;164(7):995-100111314453
Cites: Am J Respir Crit Care Med. 1999 Jan;159(1):179-879872837
Cites: MMWR Surveill Summ. 2002 Aug 2;51(6):1-1612198919
Cites: Respirology. 2003 Jun;8(2):131-912753526
Cites: Thorax. 2004 Feb;59(2):120-514760151
Cites: Chest. 2004 May;125(5):1657-6415136373
Cites: J Allergy Clin Immunol. 1984 Apr;73(4):516-226707394
Cites: Chest. 1985 Oct;88(4):608-173899533
Cites: Am Rev Respir Dis. 1988 Oct;138(4):829-363202457
Cites: N Engl J Med. 1989 Feb 2;320(5):271-72911321
Cites: Am Rev Respir Dis. 1989 Sep;140(3 Pt 2):S85-912675712
Cites: Respiration. 1990;57(3):137-442274712
Cites: Am Rev Respir Dis. 1991 Jun;143(6):1215-232048803
Cites: Am Rev Respir Dis. 1992 Feb;145(2 Pt 1):301-101736734
Cites: Am Rev Respir Dis. 1992 Oct;146(4):888-941416415
Cites: Eur Respir J. 1994 Jun;7(6):1032-47925869
Cites: Am J Respir Crit Care Med. 1995 May;151(5):1377-827735588
Cites: Am J Respir Crit Care Med. 1995 Jul;152(1):87-927599868
Cites: Am J Respir Crit Care Med. 1995 Jul;152(1):98-1027599870
Cites: Am J Respir Crit Care Med. 1996 Jun;153(6 Pt 1):1802-118665038
Cites: Eur Respir J. 1996 Apr;9(4):687-958726932
Cites: Br Med Bull. 1997 Jan;53(1):58-709158284
Cites: Eur Respir J. 1997 Jun;10(6):1380-919192947
Cites: Eur Respir J. 1997 Nov;10(11):2495-5019426085
Cites: Eur Respir J. 1998 Aug;12(2):315-359727780
Cites: Am J Respir Crit Care Med. 2001 Apr;163(5):1256-7611316667
PubMed ID
17551598 View in PubMed
Less detail

The association between chronic exposure to traffic-related air pollution and ischemic heart disease.

https://arctichealth.org/en/permalink/ahliterature125025
Source
J Toxicol Environ Health A. 2012;75(7):402-11
Publication Type
Article
Date
2012
Author
Bernardo S Beckerman
Michael Jerrett
Murray Finkelstein
Pavlos Kanaroglou
Jeffrey R Brook
M Altaf Arain
Malcolm R Sears
David Stieb
John Balmes
Kenneth Chapman
Author Affiliation
School of Public Health, University of California Berkeley, Berkeley, California 94720-7360, USA. beckerman@berkeley.edu
Source
J Toxicol Environ Health A. 2012;75(7):402-11
Date
2012
Language
English
Publication Type
Article
Keywords
Aged
Air Pollution - adverse effects - analysis
Cohort Studies
Cross-Sectional Studies
Environmental monitoring
Epidemiological Monitoring
Female
Humans
Inhalation Exposure - adverse effects - analysis
Male
Middle Aged
Models, Theoretical
Myocardial Ischemia - chemically induced - epidemiology
Nitrogen Dioxide - analysis - toxicity
Ontario - epidemiology
Oxidants, Photochemical - analysis - toxicity
Ozone - analysis - toxicity
Particulate Matter - analysis - toxicity
Poisson Distribution
Prevalence
Regression Analysis
Risk
Abstract
Increasing evidence links air pollution to the risk of cardiovascular disease. This study investigated the association between ischemic heart disease (IHD) prevalence and exposure to traffic-related air pollution (nitrogen dioxide [NO2], fine particulate matter [PM2.5], and ozone [O3]) in a population of susceptible subjects in Toronto. Local (NO2) exposures were modeled using land use regression based on extensive field monitoring. Regional exposures (PM2.5, O3) were modeled as confounders using inverse distance weighted interpolation based on government monitoring data. The study sample consisted of 2360 patients referred during 1992 to 1999 to a pulmonary clinic at the Toronto Western Hospital in Toronto, Ontario, Canada, to diagnose or manage a respiratory complaint. IHD status was determined by clinical database linkages (ICD-9-CM 412-414). The association between IHD and air pollutants was assessed with a modified Poisson regression resulting in relative risk estimates. Confounding was controlled with individual and neighborhood-level covariates. After adjusting for multiple covariates, NO2 was significantly associated with increased IHD risk, relative risk (RR) = 1.33 (95% confidence interval [CI]: 1.2, 1.47). Subjects living near major roads and highways had a trend toward an elevated risk of IHD, RR = 1.08 (95% CI: 0.99, 1.18). Regional PM2.5 and O3 were not associated with risk of IHD.
PubMed ID
22524595 View in PubMed
Less detail

Asthma: epidemiology, etiology and risk factors.

https://arctichealth.org/en/permalink/ahliterature148568
Source
CMAJ. 2009 Oct 27;181(9):E181-90
Publication Type
Article
Date
Oct-27-2009
Author
Padmaja Subbarao
Piush J Mandhane
Malcolm R Sears
Author Affiliation
Department of Pediatric Respirology, Hospital for Sick Children, University of Toronto, Toronto, Ont.
Source
CMAJ. 2009 Oct 27;181(9):E181-90
Date
Oct-27-2009
Language
English
Publication Type
Article
Keywords
Adolescent
Adult
Age Distribution
Asthma - epidemiology - etiology - physiopathology
Child
Cross-Sectional Studies
Environmental Exposure - adverse effects
Female
Follow-Up Studies
Genetic Predisposition to Disease - epidemiology
Humans
Male
Middle Aged
Occupational Exposure - adverse effects
Ontario - epidemiology
Prevalence
Recurrence
Respiratory Function Tests
Risk factors
Severity of Illness Index
Sex Distribution
Smoking - adverse effects
Young Adult
Notes
Cites: Thorax. 1999 Dec;54(12):1119-3810567633
Cites: Arch Intern Med. 1999 Nov 22;159(21):2582-810573048
Cites: Pediatr Pulmonol. 1999 Dec;28(6):394-40110587412
Cites: Arch Pediatr Adolesc Med. 2000 Feb;154(2):143-910665600
Cites: Eur Respir J. 2000 Jan;15(1):151-710678638
Cites: Allergy. 2001 Jun;56(6):491-711421892
Cites: Pediatr Allergy Immunol. 2001 Jun;12(3):142-811486787
Cites: J Pediatr. 2001 Aug;139(2):261-611487754
Cites: Pediatrics. 2001 Oct;108(4):E6911581477
Cites: Eur Respir J. 2001 Sep;18(3):598-61111589359
Cites: Arch Pediatr Adolesc Med. 2001 Nov;155(11):1261-511695937
Cites: Asian Pac J Allergy Immunol. 2001 Jun;19(2):63-811699722
Cites: Am J Epidemiol. 2001 Nov 15;154(10):909-1511700245
Cites: Am J Respir Crit Care Med. 2002 Feb 1;165(3):358-6511818321
Cites: J Allergy Clin Immunol. 2002 Feb;109(2):189-9411842286
Cites: Arch Pediatr Adolesc Med. 2002 Mar;156(3):241-511876667
Cites: Clin Exp Allergy. 2002 Feb;32(2):205-911929483
Cites: Clin Exp Allergy. 2002 Jan;32(1):43-5012002736
Cites: Eur Respir J. 2002 May;19(5):899-90512030731
Cites: Pediatr Res. 2002 Jul;52(1):6-1112084840
Cites: J Allergy Clin Immunol. 2002 Jul;110(1):72-712110824
Cites: Pediatr Allergy Immunol. 2003 Dec;14(6):441-714675470
Cites: Pediatr Allergy Immunol. 2003 Dec;14(6):464-914675474
Cites: Am J Respir Crit Care Med. 2004 Apr 15;169(8):921-714764431
Cites: Clin Exp Allergy. 2004 Apr;34(4):548-5415080806
Cites: J Allergy Clin Immunol. 2004 Apr;113(4):650-615100668
Cites: Lancet. 2004 May 22;363(9422):1689-9715158630
Cites: J Allergy Clin Immunol. 2004 Jun;113(6):1051-715208584
Cites: Am J Respir Crit Care Med. 2004 Aug 1;170(3):260-515059789
Cites: Pediatr Allergy Immunol. 2004 Aug;15(4):291-30715305938
Cites: J Allergy Clin Immunol. 2004 Oct;114(4):755-6015480312
Cites: Br Med J. 1969 Nov 8;4(5679):321-55386265
Cites: Br J Prev Soc Med. 1975 Dec;29(4):228-381220834
Cites: Med J Aust. 1976 Mar 27;1(13):430-4818487
Cites: J Epidemiol Community Health. 1978 Jun;32(2):79-85681590
Cites: Am Rev Respir Dis. 1980 Oct;122(4):567-757436122
Cites: Pediatrics. 1992 Apr;89(4 Pt 2):735-91557270
Cites: Am Rev Respir Dis. 1992 May;145(5):1136-411586059
Cites: Pediatr Pulmonol. 1992 Jun;13(2):78-851495861
Cites: JAMA. 1992 Dec 23-30;268(24):3437-401460733
Cites: Pediatrics. 1993 Jan;91(1):56-618416505
Cites: CMAJ. 1993 Jan 15;148(2):185-908420656
Cites: Arch Dis Child. 1992 Dec;67(12):1454-81489224
Cites: J Asthma. 1993;30(5):329-498407734
Cites: Am J Respir Crit Care Med. 1994 Feb;149(2 Pt 1):358-648306030
Cites: Am J Respir Crit Care Med. 1994 Jan;149(1):106-128111567
Cites: Arch Dis Child. 1994 Mar;70(3):174-88135558
Cites: Br J Nutr. 1994 Feb;71(2):223-388142334
Cites: J Allergy Clin Immunol. 1994 Mar;93(3):575-848151060
Cites: Psychiatry. 1994 Feb;57(1):51-618190828
Cites: BMJ. 1994 Jun 18;308(6944):1596-6008025425
Cites: BMJ. 1994 Jul 9;309(6947):72-38038667
Cites: Am J Respir Crit Care Med. 1994 Oct;150(4):956-617921469
Cites: Acta Paediatr. 1994 Aug;83(8):854-617981563
Cites: N Engl J Med. 1995 Jan 19;332(3):133-87800004
Cites: Ann Hum Genet. 1994 Oct;58(Pt 4):359-687864591
Cites: Thorax. 1994 Dec;49(12):1189-917878550
Cites: Eur Respir J. 1995 Mar;8(3):349-567789476
Cites: Am J Respir Crit Care Med. 1995 Aug;152(2):570-57633709
Cites: Am J Respir Crit Care Med. 1995 Aug;152(2):576-97633710
Cites: Am J Respir Crit Care Med. 1995 Oct;152(4 Pt 1):1183-87551368
Cites: Chest. 1995 Nov;108(5):1228-347587421
Cites: Am J Respir Crit Care Med. 1995 Dec;152(6 Pt 1):2176-808520794
Cites: J Asthma. 1996;33(2):97-1038609104
Cites: J Med. 1995;26(5-6):261-778721903
Cites: Clin Exp Allergy. 1999 Aug;29(8):1042-810457106
Cites: Lancet. 1999 Aug 14;354(9178):541-510470697
Cites: Am J Public Health. 2000 Mar;90(3):428-3010705865
Cites: Clin Exp Allergy. 1993 Nov;23(11):941-810779282
Cites: Breastfeed Rev. 2000 Mar;8(1):5-1110842574
Cites: Respir Med. 2000 May;94(5):466-7410868710
Cites: Am J Respir Crit Care Med. 2000 Jul;162(1):68-7410903222
Cites: Postgrad Med J. 2000 Nov;76(901):694-911060143
Cites: Adv Exp Med Biol. 2000;478:131-711065066
Cites: J Allergy Clin Immunol. 2000 Nov;106(5):867-7311080708
Cites: J Allergy Clin Immunol. 2001 Jan;107(1):48-5411149990
Cites: Respir Med. 2001 Feb;95(2):122-911217908
Cites: Chest. 2001 Jan;119(1):115-911157592
Cites: J Gend Specif Med. 2000 Nov-Dec;3(8):57-6111253268
Cites: J Allergy Clin Immunol. 2001 Apr;107(4):732-311295666
Cites: J Allergy Clin Immunol. 2005 Jul;116(1):49-5515990772
Cites: Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10604-916009939
Cites: J Allergy Clin Immunol. 2005 Sep;116(3):571-716159626
Cites: Pediatr Infect Dis J. 2005 Nov;24(11 Suppl):S170-6, discussion S174-516378042
Cites: J Allergy Clin Immunol. 2006 Jan;117(1):72-816387587
Cites: Thorax. 2006 Jan;61(1):48-5316396953
Cites: J Allergy Clin Immunol. 2006 Feb;117(2 Suppl Mini-Primer):S456-6116455346
Cites: Genes Immun. 2006 Mar;7(2):95-10016395390
Cites: J Allergy Clin Immunol. 2006 Mar;117(3):642-816522465
Cites: J Allergy Clin Immunol. 2006 May;117(5):969-77; quiz 97816675321
Cites: Nature. 2006 May 11;441(7090):143-516688142
Cites: J Asthma. 2006 May;43(4):287-9216809242
Cites: Cochrane Database Syst Rev. 2006;(3):CD00013316855951
Cites: Thorax. 2006 Aug;61(8):722-816877691
Cites: Int J Occup Med Environ Health. 2006;19(1):70-616881601
Cites: Am J Respir Crit Care Med. 2006 Sep 1;174(5):499-50716763215
Cites: Lancet. 2006 Aug 26;368(9537):733-4316935684
Cites: Lancet. 2006 Aug 26;368(9537):763-7016935687
Cites: Lancet. 2006 Aug 26;368(9537):804-1316935691
Cites: J Allergy Clin Immunol. 2006 Sep;118(3):682-9016950288
Cites: Am J Clin Nutr. 2006 Oct;84(4):903-1117023719
Cites: N Engl J Med. 2006 Oct 19;355(16):1682-917050892
Cites: Am J Respir Crit Care Med. 2006 Nov 15;174(10):1094-10016973983
Cites: N Engl J Med. 2006 Nov 23;355(21):2226-3517124020
Cites: J Allergy Clin Immunol. 2006 Dec;118(6):1271-817157656
Cites: Int J Environ Health Res. 2006 Dec;16(6):391-40417164166
Cites: Pediatrics. 2007 Jan;119(1):e225-3117200248
Cites: J Allergy Clin Immunol. 2007 Jan;119(1):57-6317208586
Cites: Arch Intern Med. 2007 Feb 12;167(3):221-817296876
Cites: Addiction. 2002 Aug;97(8):1055-6112144608
Cites: J Allergy Clin Immunol. 2002 Aug;110(2):228-3512170262
Cites: Am J Respir Crit Care Med. 2002 Sep 15;166(6):827-3212231492
Cites: N Engl J Med. 2002 Sep 19;347(12):911-2012239261
Cites: Lancet. 2002 Aug 10;360(9331):465-612241724
Cites: Lancet. 2002 Sep 21;360(9337):901-712354471
Cites: Eur Respir J. 2002 Sep;20(3):635-912358340
Cites: Am J Respir Crit Care Med. 2002 Oct 1;166(7):933-812359649
Cites: Paediatr Respir Rev. 2002 Sep;3(3):265-7212376064
Cites: Clin Exp Immunol. 2003 Jan;131(1):143-712519398
Cites: J Allergy Clin Immunol. 2003 Jan;111(1):51-612532096
Cites: Am J Prev Med. 2003 Feb;24(2):160-912568822
Cites: J Clin Epidemiol. 2003 Feb;56(2):180-712654413
Cites: Pediatr Allergy Immunol. 2002;13 Suppl 15:29-3112688621
Cites: Pediatr Pulmonol. 2003 Jul;36(1):22-612772219
Cites: Clin Exp Allergy. 2003 Sep;33(9):1190-712956738
Cites: Eur J Epidemiol. 2003;18(8):755-6112974550
Cites: N Engl J Med. 2003 Oct 9;349(15):1414-2214534334
Cites: Lancet. 2003 Oct 11;362(9391):1192-714568741
Cites: Allergy. 2003 Nov;58(11):1187-9414616132
Cites: Clin Allergy. 1983 Nov;13(6):503-86685583
Cites: Chest. 1986 Oct;90(4):480-43757559
Cites: J Allergy Clin Immunol. 1987 Jan;79(1):16-243492524
Cites: J Allergy Clin Immunol. 1987 Dec;80(6):868-753693764
Cites: Clin Allergy. 1988 Mar;18(2):131-423365857
Cites: N Engl J Med. 1989 Apr 27;320(17):1097-1022710172
Cites: Clin Exp Allergy. 1989 Jul;19(4):419-242758355
Cites: Thorax. 1989 May;44(5):425-312763244
Cites: Am Rev Respir Dis. 1989 Nov;140(5):1325-302817595
Cites: BMJ. 1989 Nov 18;299(6710):1259-602513902
Cites: N Engl J Med. 1991 Oct 10;325(15):1067-711891008
Cites: Am Rev Respir Dis. 1992 Feb;145(2 Pt 1):301-101736734
Cites: J Allergy Clin Immunol. 1992 Mar;89(3):709-131545092
Cites: Lancet. 1999 Sep;354 Suppl 2:SII12-510507253
Cites: J Asthma. 1999 Oct;36(7):575-8210524540
Cites: Am J Epidemiol. 2004 Dec 1;160(11):1108-1615561990
Cites: Am J Respir Crit Care Med. 2005 Jan 15;171(2):109-1415486340
Cites: Am J Respir Crit Care Med. 2005 Jan 15;171(2):137-4115516534
Cites: Am J Respir Crit Care Med. 2005 Jan 15;171(2):121-815531754
Cites: Curr Opin Allergy Clin Immunol. 2005 Feb;5(1):23-915643340
Cites: Am J Respir Crit Care Med. 2005 Feb 1;171(3):231-715502115
Cites: Am J Respir Crit Care Med. 2005 Mar 1;171(5):440-515557135
Cites: Curr Opin Allergy Clin Immunol. 2005 Apr;5(2):153-915764906
Cites: Curr Allergy Asthma Rep. 2005 May;5(3):212-2015842959
Cites: Nat Immunol. 2005 Jun;6(6):537-915908930
Cites: Am J Respir Crit Care Med. 2005 Jul 1;172(1):45-5415805179
Cites: Am J Respir Crit Care Med. 1996 Jul;154(1):144-508680670
Cites: Pediatrics. 1996 Aug;98(2 Pt 1):191-58692616
Cites: Lancet. 1996 Oct 19;348(9034):1060-48874457
Cites: Thorax. 1996 Jul;51(7):670-68882071
Cites: Arch Dis Child. 1996 Nov;75(5):392-88957951
Cites: Pediatr Pulmonol. 1997 Jan;23(1):14-209035194
Cites: Chest. 1997 Feb;111(2):303-109041973
Cites: Med Hypotheses. 1997 Jan;48(1):27-329049986
Cites: Am J Respir Crit Care Med. 1997 Mar;155(3):1060-59116987
Cites: Am J Respir Crit Care Med. 1997 Nov;156(5):1413-209372654
Cites: Pediatrics. 1998 Feb;101(2):208-139445493
Cites: J Allergy Clin Immunol. 1998 Apr;101(4 Pt 1):439-449564794
Cites: J Allergy Clin Immunol. 1998 Apr;101(4 Pt 1):484-909564801
Cites: Am J Respir Crit Care Med. 1998 May;157(5 Pt 2):S191-49606319
Cites: Lancet. 1998 Apr 25;351(9111):1225-329643741
Cites: Am J Respir Crit Care Med. 1999 Feb;159(2):403-109927350
Cites: Pediatr Pulmonol. 1999 Feb;27(2):85-9410088931
Cites: Acta Paediatr. 1999 Jan;88(1):7-1210090539
Cites: Am J Epidemiol. 1999 Jun 1;149(11):1030-710355379
Cites: J Asthma. 1999 Jun;36(4):343-5010386498
Cites: Am J Clin Nutr. 2007 Mar;85(3):788-9517344501
Cites: Am J Clin Nutr. 2007 Mar;85(3):853-917344509
Cites: Clin Exp Allergy. 2007 Apr;37(4):518-2517430348
Cites: Clin Exp Allergy. 2007 May;37(5):671-917456214
Cites: Ann Allergy Asthma Immunol. 2007 Apr;98(4):337-4317458429
Cites: Chest. 2007 May;131(5):1331-817494783
Cites: Chest. 2007 Jun;131(6):1753-917413050
Cites: Chest. 2007 Jun;131(6):1747-5217413052
Cites: Nature. 2007 Jul 26;448(7152):470-317611496
Cites: Lancet. 2007 Jul 28;370(9584):336-4117662882
Cites: Thorax. 2007 Sep;62(9):773-917389754
Cites: J Allergy Clin Immunol. 2007 Sep;120(3):526-917658590
Cites: N Engl J Med. 2007 Dec 6;357(23):2348-5818057337
Cites: Twin Res Hum Genet. 2008 Apr;11(2):132-4218361713
Cites: Pediatrics. 2008 Apr;121(4):697-70218381533
Cites: J Allergy Clin Immunol. 2008 Apr;121(4):860-318395550
Cites: Occup Med (Lond). 2008 May;58(3):169-7418308695
Cites: Am J Respir Crit Care Med. 2008 Jun 1;177(11):1194-20018310477
Cites: Allergy. 2008 Jul;63(7):857-6418588551
Cites: CMAJ. 2008 Nov 18;179(11):1133-4219015564
Comment In: CMAJ. 2009 Oct 27;181(9):616; author reply 61619858270
PubMed ID
19752106 View in PubMed
Less detail

Attenuation of the September epidemic of asthma exacerbations in children: a randomized, controlled trial of montelukast added to usual therapy.

https://arctichealth.org/en/permalink/ahliterature161582
Source
Pediatrics. 2007 Sep;120(3):e702-12
Publication Type
Article
Date
Sep-2007
Author
Neil W Johnston
Piush J Mandhane
Jennifer Dai
Joanne M Duncan
Justina M Greene
Kim Lambert
Malcolm R Sears
Author Affiliation
Firestone Institute for Respiratory Health, St Joseph's Healthcare, 50 Charlton Ave E, Hamilton, Ontario, Canada L8N 4A6. njohnsto@mcmaster.ca
Source
Pediatrics. 2007 Sep;120(3):e702-12
Date
Sep-2007
Language
English
Publication Type
Article
Keywords
Acetates - therapeutic use
Adolescent
Adrenal Cortex Hormones - therapeutic use
Adrenergic beta-Agonists - therapeutic use
Age Factors
Anti-Asthmatic Agents - therapeutic use
Asthma - drug therapy - epidemiology
Child
Child, Preschool
Common Cold - epidemiology
Disease Outbreaks - prevention & control
Double-Blind Method
Drug Therapy, Combination
Female
Humans
Male
Multivariate Analysis
Office visits - statistics & numerical data
Ontario - epidemiology
Questionnaires
Quinolines - therapeutic use
Schools
Seasons
Severity of Illness Index
Sex Factors
Abstract
A recurring epidemic of asthma exacerbations in children occurs annually in September in North America when school resumes after summer vacation.
Our goal was to determine whether montelukast, added to usual asthma therapy, would reduce days with worse asthma symptoms and unscheduled physician visits of children during the September epidemic.
A total of 194 asthmatic children aged 2 to 14 years, stratified according to age group (2-5, 6-9, and 10-14 years) and gender, participated in a double-blind, randomized, placebo-controlled trial of the addition of montelukast to usual asthma therapy between September 1 and October 15, 2005.
Children randomly assigned to receive montelukast experienced a 53% reduction in days with worse asthma symptoms compared with placebo (3.9% vs 8.3%) and a 78% reduction in unscheduled physician visits for asthma (4 [montelukast] vs 18 [placebo] visits). The benefit of montelukast was seen both in those using and not using regular inhaled corticosteroids and among those reporting and not reporting colds during the trial. There were differences in efficacy according to age and gender. Boys aged 2 to 5 years showed greater benefit from montelukast (0.4% vs 8.8% days with worse asthma symptoms) than did older boys, whereas among girls the treatment effect was most evident in 10- to 14-year-olds (4.6% [montelukast] vs 17.0% [placebo]), with nonsignificant effects in younger girls.
Montelukast added to usual treatment reduced the risk of worsened asthma symptoms and unscheduled physician visits during the predictable annual September asthma epidemic. Treatment-effect differences observed between age and gender groups require additional investigation.
Notes
Comment In: Pediatrics. 2008 Jun;121(6):1289; author reply 1289-9018519503
PubMed ID
17766511 View in PubMed
Less detail

Canadian economic evaluation of budesonide-formoterol as maintenance and reliever treatment in patients with moderate to severe asthma.

https://arctichealth.org/en/permalink/ahliterature161859
Source
Can Respir J. 2007 Jul-Aug;14(5):269-75
Publication Type
Article
Author
Elizabeth Miller
Malcolm R Sears
Andrew McIvor
Anna Liovas
Author Affiliation
Axia Research Inc., 181 Main Street West, Hamilton, Ontario, Canada. betsy@axiaresearch.com
Source
Can Respir J. 2007 Jul-Aug;14(5):269-75
Language
English
Publication Type
Article
Keywords
Albuterol - administration & dosage - analogs & derivatives - economics
Androstadienes - administration & dosage - economics
Asthma - classification - drug therapy - economics
Bronchodilator Agents - administration & dosage - economics
Budesonide - administration & dosage - economics
Canada
Cost-Benefit Analysis
Drug Costs
Drug Therapy, Combination
Ethanolamines - administration & dosage - economics
Evaluation Studies as Topic
Health Care Costs - statistics & numerical data
Hospitalization - economics
Humans
Nebulizers and Vaporizers - economics
Severity of Illness Index
Treatment Outcome
Abstract
To compare the cost-effectiveness of budesonide-formoterol in a single inhaler used as both maintenance and reliever medication versus clinician-directed titration of salmeterol-fluticasone as maintenance medication, plus salbutamol taken as needed, in controlling asthma in adults and adolescents.
A Canadian economic evaluation was conducted based on the results of a large (n=2143), open-label, randomized, controlled effectiveness trial in which health resource use was prospectively collected. The primary outcome measurement was the time to the first severe exacerbation. Costs included direct medical costs (physician and emergency room visits, hospitalizations, asthma drug costs, etc) and productivity (absenteeism). The time horizon was one year, which corresponded to the duration of the clinical trial. Prices were obtained from 2005 Canadian sources. Both health care and societal perspectives were considered, and deterministic univariate sensitivity analyses were conducted.
In the clinical trial, budesonide-formoterol as maintenance and reliever treatment was superior to salmeterol-fluticasone with respect to the time to the first severe exacerbation, overall rate of exacerbations and use of as-needed reliever medication. The annualized rate of severe exacerbations was 0.24 events/patient in the budesonide-formoterol arm and 0.31 events/patient in the salmeterol-fluticasone arm (P=0.0025). From a health care perspective, the mean cost per patient-year was $1,315 in the budesonide-formoterol arm versus $1,541 in the salmeterol-fluticasone arm. From a societal perspective, the mean cost per patient-year was $1,538 in the budesonide-formoterol arm and $1,854 in the salmeterol-fluticasone arm. Budesonide-formoterol was dominant (more effective and less expensive) in the base case analysis from both perspectives. The results were robust under sensitivity testing.
The strategy that allows budesonide-formoterol to be used in a single inhaler as both maintenance and reliever medication proved to be more effective and less expensive than a strategy of clinician-directed titration of salmeterol-fluticasone with salbutamol as reliever therapy.
Notes
Cites: J R Coll Physicians Lond. 1993 Oct;27(4):387-908289159
Cites: J Allergy Clin Immunol. 2001 Jan;107(1):3-811149982
Cites: Chest. 2004 Mar;125(3):1081-10215006973
Cites: Eur Respir J. 2005 Nov;26(5):819-2816264042
Cites: CMAJ. 1996 Mar 15;154(6):821-318634960
Cites: Am Heart J. 2005 Mar;149(3):434-4315864231
Cites: CMAJ. 2005 Sep 13;173(6 Suppl):S3-1116157733
Comment In: Can Respir J. 2007 Jul-Aug;14(5):264-617874484
PubMed ID
17703241 View in PubMed
Less detail

A cohort study of traffic-related air pollution and mortality in Toronto, Ontario, Canada.

https://arctichealth.org/en/permalink/ahliterature150699
Source
Environ Health Perspect. 2009 May;117(5):772-7
Publication Type
Article
Date
May-2009
Author
Michael Jerrett
Murray M Finkelstein
Jeffrey R Brook
M Altaf Arain
Palvos Kanaroglou
Dave M Stieb
Nicolas L Gilbert
Dave Verma
Norm Finkelstein
Kenneth R Chapman
Malcolm R Sears
Author Affiliation
Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California 94720-7360, USA. jerrett@berkeley.edu
Source
Environ Health Perspect. 2009 May;117(5):772-7
Date
May-2009
Language
English
Publication Type
Article
Keywords
Air Pollutants - toxicity
Cardiovascular System - drug effects
Cohort Studies
Environmental Exposure - adverse effects
Female
Humans
Lung - drug effects
Male
Middle Aged
Ontario
Ozone - toxicity
Particulate Matter - toxicity
Respiratory Tract Diseases - epidemiology - mortality
Smoking
Vehicle Emissions - analysis
Abstract
Chronic exposure to traffic-related air pollution (TRAP) may contribute to premature mortality, but few studies to date have addressed this topic.
In this study we assessed the association between TRAP and mortality in Toronto, Ontario, Canada.
We collected nitrogen dioxide samples over two seasons using duplicate two-sided Ogawa passive diffusion samplers at 143 locations across Toronto. We calibrated land use regressions to predict NO2 exposure on a fine scale within Toronto. We used interpolations to predict levels of particulate matter with aerodynamic diameter
Notes
Cites: Chronic Dis Can. 2000;21(3):104-1311082346
Cites: Environ Health Perspect. 2008 Feb;116(2):196-20218288318
Cites: J Epidemiol Community Health. 2002 Aug;56(8):588-9412118049
Cites: J Air Waste Manag Assoc. 2002 Sep;52(9):1032-4212269664
Cites: Lancet. 2002 Oct 19;360(9341):1203-912401246
Cites: J Environ Monit. 2003 Aug;5(4):557-6212948227
Cites: Circulation. 2004 Jan 6;109(1):71-714676145
Cites: Environ Health Perspect. 2004 Apr;112(5):610-515064169
Cites: Am J Epidemiol. 2004 Jul 15;160(2):173-715234939
Cites: J Air Waste Manag Assoc. 2004 Jun;54(6):644-8015242147
Cites: Epidemiology. 2005 Jan;16(1):33-4015613943
Cites: Environ Health Perspect. 2005 Feb;113(2):201-615687058
Cites: Science. 2005 May 6;308(5723):804-615879201
Cites: Environ Health Perspect. 2005 Aug;113(8):987-9216079068
Cites: Environ Health Perspect. 2005 Oct;113(10):1447-5416203261
Cites: Epidemiology. 2005 Nov;16(6):727-3616222161
Cites: Inhal Toxicol. 2006 Feb;18(2):95-12516393926
Cites: Respir Res. 2005;6:15216372913
Cites: J Air Waste Manag Assoc. 2006 Aug;56(8):1059-6916933638
Cites: J Environ Monit. 2007 Mar;9(3):246-5217344950
Cites: J Toxicol Environ Health A. 2007 Feb 1;70(3-4):200-1217365582
Cites: Environ Res. 2007 Jul;104(3):420-3217445792
Cites: Circulation. 2007 Jul 31;116(5):489-9617638927
Cites: Environ Health Perspect. 2007 Aug;115(8):1147-5317687440
Cites: J Occup Environ Med. 2008 Jan;50(1):32-818188079
Cites: JAMA. 2002 Mar 6;287(9):1132-4111879110
PubMed ID
19479020 View in PubMed
Less detail

Environmental inequality and circulatory disease mortality gradients.

https://arctichealth.org/en/permalink/ahliterature174666
Source
J Epidemiol Community Health. 2005 Jun;59(6):481-7
Publication Type
Article
Date
Jun-2005
Author
Murray M Finkelstein
Michael Jerrett
Malcolm R Sears
Author Affiliation
Program in Occupational Health and Environmental Medicine and Institute of Environment and Health, McMaster University, Toronto, Canada. murray.finkelstein@utoronto.ca
Source
J Epidemiol Community Health. 2005 Jun;59(6):481-7
Date
Jun-2005
Language
English
Publication Type
Article
Keywords
Adult
Aged
Air Pollutants - adverse effects
Cardiovascular Diseases - etiology - mortality
Environmental Exposure - adverse effects
Epidemiologic Methods
Female
Humans
Male
Middle Aged
Ontario - epidemiology
Poverty Areas
Residence Characteristics
Respiration Disorders - etiology - mortality
Social Class
Stroke - etiology - mortality
Urban Health - statistics & numerical data
Vehicle Emissions - adverse effects
Abstract
Studies in Europe and North America have reported that living in a disadvantaged neighbourhood is associated with an increased incidence of coronary heart disease. The aim of this study was to test the hypotheses that exposure to traffic and air pollution might account for some of the socioeconomic differences in mortality rates in a city where residents are covered by universal health insurance.
Cohort mortality study. Individual postal codes used to derive: (1) socioeconomic status from census data; (2) mean air pollution levels from interpolation between governmental monitoring stations; (3) proximity to traffic from the geographical information system. Analysis conducted with Cox proportional hazards models.
Hamilton Census Metropolitan Area, Ontario, Canada, on the western tip of Lake Ontario (population about 480,000).
5228 people, aged 40 years or more, identified from register of lung function laboratory at an academic respirology clinic between 1985 and 1999.
Circulatory disease (cardiovascular and stroke) mortality rates were related to measures of neighbourhood deprivation. Circulatory disease mortality rates were also associated with indices of long term ambient pollution at the subjects' residences (relative risk 1.06, 1.00 to 1.13) and with proximity to traffic (relative risk 1.40, 1.08 to 1.81). Subjects in more deprived neighbourhoods had greater exposure to ambient particulate and gaseous pollutants and to traffic.
At least some of the observed social gradients in circulatory mortality arise from inequalities in environmental exposure to background and traffic air pollutants.
Notes
Cites: Epidemiology. 2000 Jan;11(1):11-710615837
Cites: Am J Epidemiol. 1999 Nov 15;150(10):1094-810568625
Cites: Chronic Dis Can. 2000;21(3):104-1311082346
Cites: Environ Health Perspect. 2001 Apr;109(4):341-711335181
Cites: N Engl J Med. 2001 Jul 12;345(2):99-10611450679
Cites: N Engl J Med. 2001 Jul 12;345(2):134-611450663
Cites: Eur Heart J. 2001 Jul;22(14):1198-20411440492
Cites: CMAJ. 2001 Sep 4;165(5):565-7011563208
Cites: J Epidemiol Community Health. 2002 Jan;56(1):29-3511801617
Cites: Diabetes Care. 2002 Mar;25(3):512-611874939
Cites: Environ Health Perspect. 2002 Oct;110(10):1009-1512361926
Cites: Lancet. 2002 Oct 19;360(9341):1203-912401246
Cites: J Expo Anal Environ Epidemiol. 2003 May;13(3):240-612743618
Cites: Int J Epidemiol. 2003 Jun;32(3):367-7412777421
Cites: J Epidemiol Community Health. 2004 Jan;58(1):31-4014684724
Cites: Environ Health Perspect. 2004 Jan;112(1):61-614698932
Cites: Circulation. 2004 Jan 6;109(1):71-714676145
Cites: J Urban Health. 2003 Dec;80(4):569-8914709706
Cites: Am J Epidemiol. 2004 Apr 1;159(7):655-6215033643
Cites: Environ Health Perspect. 2004 Apr;112(5):610-515064169
Cites: Lancet. 1995 Jan 21;345(8943):176-87741860
Cites: Am J Epidemiol. 1996 Nov 15;144(10):934-428916504
Cites: J Air Waste Manag Assoc. 1996 Jun;46(6):547-579028177
Cites: Lancet. 1997 May 31;349(9065):1582-79174559
Cites: J Epidemiol Community Health. 1998 Jun;52(6):399-4059764262
Cites: Res Rep Health Eff Inst. 1999 Jan;(83):1-19; discussion 21-810192116
Cites: Environ Health Perspect. 1999 Jul;107(7):521-510378998
Cites: Am Heart J. 1999 Nov;138(5 Pt 1):890-910539820
Cites: Circulation. 2000 Mar 21;101(11):1267-7310725286
PubMed ID
15911644 View in PubMed
Less detail

Geographic and gender variability in the prevalence of bronchial responsiveness in Canada.

https://arctichealth.org/en/permalink/ahliterature180176
Source
Chest. 2004 May;125(5):1657-64
Publication Type
Article
Date
May-2004
Author
Jure Manfreda
Malcolm R Sears
Margaret R Becklake
Moira Chan-Yeung
Helen Dimich-Ward
Hans C Siersted
Pierre Ernst
Lamont Sweet
Linda Van Til
Dennis M Bowie
Nicholas R Anthonisen
Author Affiliation
Department of Medicine, University of Manitoba, Winnipeg, MB, Canada. manfred@ms.umanitoba.ca
Source
Chest. 2004 May;125(5):1657-64
Date
May-2004
Language
English
Publication Type
Article
Keywords
Adult
Asthma - diagnosis - epidemiology - physiopathology
Bronchi - drug effects - physiopathology
Bronchoconstrictor Agents - diagnostic use
Canada - epidemiology
Female
Humans
Male
Methacholine Chloride - diagnostic use
Prevalence
Sex Factors
Abstract
Geographic variability in reported prevalences of asthma worldwide could in part relate to interpretation of symptoms and diagnostic biases. Bronchial responsiveness measurements provide objective evidence of a common physiologic characteristic of asthma. We measured bronchial responsiveness using the standardized protocol of the European Community Respiratory Health Survey (ECRHS) in six sites in Canada, and compared prevalences across Canada with international sites.
Samples of 3,000 to 4,000 adults aged 20 to 44 years were randomly selected in Vancouver, Winnipeg, Hamilton, Montreal, Halifax, and Prince Edward Island, and a mail questionnaire was completed by 18,616 individuals (86.5%). Preselected random subsamples (n = 2,962) attended a research laboratory for examination including more detailed questionnaires, lung function testing including methacholine challenge, and skin testing with 14 allergens.
Prevalences of bronchial hyperresponsiveness, measured as cumulative dose of methacholine required to produce a 20% fall from the post-saline solution FEV1
PubMed ID
15136373 View in PubMed
Less detail

Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months.

https://arctichealth.org/en/permalink/ahliterature116408
Source
CMAJ. 2013 Mar 19;185(5):385-94
Publication Type
Article
Date
Mar-19-2013
Author
Meghan B Azad
Theodore Konya
Heather Maughan
David S Guttman
Catherine J Field
Radha S Chari
Malcolm R Sears
Allan B Becker
James A Scott
Anita L Kozyrskyj
Author Affiliation
Department of Pediatrics, University of Alberta, Edmonton, Alta.
Source
CMAJ. 2013 Mar 19;185(5):385-94
Date
Mar-19-2013
Language
English
Publication Type
Article
Keywords
Bottle Feeding - methods
Breast Feeding - methods
Canada
Cohort Studies
Delivery, Obstetric - methods
Diet
Feces - microbiology
Female
Gastrointestinal Tract - microbiology - physiology
Gram-Negative Bacteria - isolation & purification
Gram-Positive Bacteria - isolation & purification
Humans
Infant
Infant Formula
Infant, Newborn
Male
Microbial Viability
Abstract
The gut microbiota is essential to human health throughout life, yet the acquisition and development of this microbial community during infancy remains poorly understood. Meanwhile, there is increasing concern over rising rates of cesarean delivery and insufficient exclusive breastfeeding of infants in developed countries. In this article, we characterize the gut microbiota of healthy Canadian infants and describe the influence of cesarean delivery and formula feeding.
We included a subset of 24 term infants from the Canadian Healthy Infant Longitudinal Development (CHILD) birth cohort. Mode of delivery was obtained from medical records, and mothers were asked to report on infant diet and medication use. Fecal samples were collected at 4 months of age, and we characterized the microbiota composition using high-throughput DNA sequencing.
We observed high variability in the profiles of fecal microbiota among the infants. The profiles were generally dominated by Actinobacteria (mainly the genus Bifidobacterium) and Firmicutes (with diverse representation from numerous genera). Compared with breastfed infants, formula-fed infants had increased richness of species, with overrepresentation of Clostridium difficile. Escherichia-Shigella and Bacteroides species were underrepresented in infants born by cesarean delivery. Infants born by elective cesarean delivery had particularly low bacterial richness and diversity.
These findings advance our understanding of the gut microbiota in healthy infants. They also provide new evidence for the effects of delivery mode and infant diet as determinants of this essential microbial community in early life.
Notes
Cites: Clin Dev Immunol. 2012;2012:93207222110540
Cites: J Obstet Gynecol Neonatal Nurs. 2007 Nov-Dec;36(6):605-1517973706
Cites: PLoS One. 2011;6(6):e2064721674011
Cites: Clin Perinatol. 2011 Jun;38(2):321-3121645799
Cites: Birth. 2011 Jun;38(2):99-10421599731
Cites: Environ Health Perspect. 2011 May;119(5):591-721081299
Cites: J Agric Food Chem. 2010 May 12;58(9):5334-4020394371
Cites: Microbiology. 2010 Nov;156(Pt 11):3329-4120864478
Cites: J Allergy Clin Immunol. 2007 Aug;120(2):343-5017604093
Cites: Curr Opin Gastroenterol. 2012 Jan;28(1):63-922080827
Cites: Anaerobe. 2011 Dec;17(6):478-8221497661
Cites: J Allergy Clin Immunol. 2012 Feb;129(2):434-40, 440.e1-222153774
Cites: PLoS One. 2012;7(5):e3695722606315
Cites: Nat Rev Gastroenterol Hepatol. 2012 Jun;9(6):312-2222450307
Cites: Gut Microbes. 2012 May-Jun;3(3):203-2022572829
Cites: Nature. 2012 Sep 13;489(7415):231-4122972296
Cites: PLoS One. 2012;7(10):e4579123056217
Cites: Curr Opin Pediatr. 2012 Dec;24(6):753-923111681
Cites: PLoS One. 2010;5(4):e996420376357
Cites: Genome Res. 2009 Dec;19(12):2317-2319819907
Cites: Birth. 2009 Jun;36(2):122-3219489806
Cites: Public Health Nutr. 2005 Jun;8(4):417-2115975188
Cites: Curr Opin Clin Nutr Metab Care. 2006 May;9(3):289-9616607131
Cites: Pediatrics. 2006 Aug;118(2):511-2116882802
Cites: Gut. 2007 May;56(5):661-717047098
Cites: FEMS Immunol Med Microbiol. 2011 Dec;63(3):397-40622029688
Cites: J Pediatr Gastroenterol Nutr. 2011 Jan;52(1):90-521150648
Comment In: CMAJ. 2013 Mar 19;185(5):373-423401408
PubMed ID
23401405 View in PubMed
Less detail

20 records – page 1 of 2.