Homozygosity for a premature stop codon at amino acid position 577 in the alpha-actinin-3 (ACTN3) gene leads to a-actinin-3 deficiency. This genotype is observed in approximately 18% of Caucasians. The ACTN3 R577X polymorphism has been previously associated with indicators of physical performance in several, but not all, studies. We examined the prevalence of R577X (rs1815739) and two additional haplotype tagging single nucleotide polymorphisms (htSNPs) of the ACTN3 gene (rs1791690 and rs2275998) in the Genathlete study comprising 316 male elite endurance athletes (VO2max 79.0+3.5 ml · kg(-1) · min(-1); mean +/- s) from North America, Finland, and Germany and 304 sedentary controls (VO2max 40.1+7.0 ml · kg(-1) · min(-1) matched by country of origin. The distribution of genotype and allele frequencies between the two groups was tested by Pearson chi-square and/or Fischer exact test. The prevalence of the 577X homozygote genotype was similar in endurance athletes and controls (20% and 17.5%, respectively). The resulting odds ratio for endurance performance in 577X homozygotes compared with 577R-allele carriers was 1.24 (95%CI 0.82-1.87, P = 0.3). The genotype distribution of the two htSNPs and haplotype frequencies did not differ significantly between athletes and controls. In conclusion, our findings indicate that ACTN3 R577X and other SNPs in ACTN3 are not genetic determinants of endurance performance in Caucasian males.
Adiponectin and adiponectin receptor gene variants in relation to resting metabolic rate, respiratory quotient, and adiposity-related phenotypes in the Quebec Family Study.
Despite adiponectin's presumed role in fatty acid oxidation and energy homeostasis, little is known about the effect of gene variants on substrate oxidation, energy expenditure, and adiposity-related phenotypes.
We examined the effects of genetic variation in adiponectin (ADIPOQ) and adiponectin receptors 1 and 2 (ADIPOR1 and ADIPOR2) on resting metabolic rate, respiratory quotient (RQ), and adiposity-related phenotypes.
We studied the associations of ADIPOQ, ADIPOR1, and ADIPOR2 polymorphisms with resting metabolic rate, RQ, and body mass index, percentage body fat, sum of 6 skinfold thicknesses, waist circumference, and total, subcutaneous, and visceral fat in 759 participants in the Québec Family Study.
The ADIPOQ 45T-->G single-nucleotide polymorphism (SNP) was significantly (P = 0.0002 to 0.04) associated with overall adiposity and abdominal adiposity; the rare homozygotes (G/G) had a leaner phenotype than did the carriers of the common allele. One SNP each in the putative promoter of ADIPOR1 (ie, -3882T-->C) and ADIPOR2 (ie, IVS1 -1352G-->A) was associated with RQ (P = 0.03 and 0.04, respectively), and the association was even stronger in nonobese persons (P = 0.02 and 0.003). Carriers of the common alleles (ADIPOR1 T and ADIPOR2 G alleles) had a lower RQ than did the rare homozygotes. A significant genotype-by-genotype interaction (P = 0.0002 to 0.02) was found between SNPs in the promoters of ADIPOQ (-3971A-->G) and ADIPOR1 (-3882T-->C). Subjects carrying the minor ADIPOQ allele (G allele) who were rare homozygotes (C/C) for the ADIPOR1 SNP had a higher RQ (P = 0.003) and greater overall (P G variant contributes to overall fatness and abdominal obesity are confirmed. Moreover, variants in the promoter region of both ADIPOR genes contribute to substrate oxidation.
Notes
Comment In: Am J Clin Nutr. 2007 Jan;85(1):1-217209169
Among adrenergic receptor subtypes that regulate lipid mobilization, the alpha2-adrenergic receptor is involved in the inhibition of fatty acid mobilization from adipose tissue. A C-1291G polymorphism is located in the alpha2-adrenergic receptor gene (ADRA2A) but no association with body fat accumulation has been reported yet.
Body mass index (BMI), fat mass (FAT), percentage body fat (%FAT), trunk-to-extremity skinfold ratio (TER), sum of eight skinfolds (SF8), and abdominal subcutaneous (ASF), visceral (AVF), and total (ATF) fat areas assessed by CT scan have been measured in adult sedentary white (n = 503) and black (n = 276) subjects participating in the HERITAGE Family Study. Association between the C-1291G polymorphism and each phenotype was tested separately in men and women of each race using ANCOVA with the effects of age as covariate in addition to the effects of BMI for TER and of FAT for AVF, ASF, and ATF.
The allele frequencies of the ADRA2A C-1291G polymorphism differed between races. No association was observed in white subjects, except for a moderate effect of the polymorphism accounting for less than 1% of the variance in AVF and ATF in women. In black subjects, however, the G-1291 allele was found to be associated with an increase of TER in men (3.8% of variance accounted for by the polymorphism), while in black women it was associated with a decrease in TER (2.9%) and in AVF (2.5%).
These results suggest a role for the ADRA2A gene in determining the propensity to store fat in the abdominal area, independently of total body fatness.
Several single nucleotide polymorphisms (SNPs) for type 2 diabetes mellitus (T2DM) risk have been identified by genome wide association studies (GWAS). The objective of the present study was to investigate the impact of these SNPs on T2DM intermediate phenotypes in order to clarify the physiological mechanisms through which they exert their effects on disease etiology. We analysed 23 SNPs in 9 T2DM genes (CDKAL1, CDKN2B, HHEX/IDE, IGF2BP2, KCNJ11, SLC30A8, TCF2, TCF7L2 and WFS1) in a maximum of 712 men and women from the Quebec Family Study. The participants underwent a 75 g oral glucose tolerance test (OGTT) and were measured for glucose, insulin and C-peptide levels. Indices of insulin sensitivity and insulin secretion were derived from fasting and OGTT measurements. We confirmed the significant associations of variants in CDKAL1, CDKN2B, HHEX/IDE, KCNJ11 and TCF7L2 with insulin secretion and also found associations of some of these variants with insulin sensitivity and glucose tolerance. IGF2BP2 and SLC30A8 SNPs were not associated with insulin secretion but were with insulin sensitivity and glucose tolerance (0.002
It has been suggested recently that molecules expressed both in the pancreas and hypothalamus, such as mu-opioid receptor 1 (OPRM1), could form an integrated brain-liver system, which may sense glucose levels and therefore contribute to the development of type 2 diabetes mellitus (T2DM). In the present study, we tested associations between OPRM1 gene polymorphisms (rs1799971, 102T/C and rs0648007G/A) and indices of glucose tolerance, insulin sensitivity (IS) and insulin secretion derived from plasma measures obtained in a fasting state and following a 75 g oral glucose tolerance test (OGTT) in 749 subjects from the Quebec Family Study (QFS). Polymorphisms were tested for association with glucose tolerance (normal vs IFG and T2DM combined) by calculating a chi(2) statistic and corresponding P values, whereas associations with quantitative measures of glucose tolerance, IS and insulin secretion were tested using mixed linear models implemented in the MIXED procedure of sas (SAS Institute, Cary, NC, USA). Associations were found between 102T/C OPRM1 and indices of glucose tolerance and IS. Compared with T/T homozygotes, carriers of the OPRM1 C-102 variant exhibited a better glucose tolerance with a lower (P = 0.006) glucose area under the curve (AUC) following the OGTT and a better IS with a higher (P = 0.03) value of the Cederholm index, a numerical index of the curve relating glucose uptake to the log(10) plasma insulin levels during the OGTT. The results of the present study reveal that the 102T/C OPRM1 gene polymorphism is associated with a better glucose tolerance and improved IS, both of which suggest a potential protective effect of this variant on T2DM risk.
Genetic factors, alone or in interaction with components of the diet, are thought to be involved in the development of the metabolic syndrome. The objective of our study was first to compare the frequency of the peroxisome proliferator-activated receptor (PPAR)alpha-L162V polymorphism in a sample of men with and without the metabolic syndrome as defined by the National Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATPIII) guidelines, and secondly, to evaluate gene-diet interaction effects on features of the metabolic syndrome. The PPARalpha-L162V genotype was determined in a sample of 632 men by a polymerase chain reaction-restriction length polymorphism (PCR-RFLP)-based method; fat as well as saturated fat intakes were evaluated by a dietitian-administered food frequency questionnaire. The frequency of the V162 allele was similar in men with ( n=281) and without ( n=351) the metabolic syndrome ( chi(2)=0.03, p=0.84) but was higher in subjects having simultaneously abdominal obesity, hypertriglyceridemia, and low high-density lipoprotein cholesterol (HDL-C) levels ( chi(2)=3.73, p=0.05). Carriers of the V162 were characterized by higher plasma apolipoprotein B and triglyceride (TG) levels ( p=0.10, p=0.004). In a model including the PPARalpha-L162V polymorphism, fat or saturated fat, its interaction, and covariates (smoking habits, and energy and alcohol intake), the interaction explained a significant percentage of the variance observed in waist circumference ( p
The lipase A, lysosomal acid, cholesterol esterase enzyme (LIPA) is involved in the hydrolysis of triglycerides (TGs) and cholesteryl esters (CEs) delivered to lysosomes. LIPA deficiency in human causes two distinct phenotypes characterized by intracellular storage of CE and derangements in the control of cholesterol production, namely the Wolman disease (WD) and the CE storage disease (CESD). To test the potential association of LIPA gene polymorphisms with obesity-related metabolic complications, promoter, exons, and intronic flanking regions of the LIPA gene were first sequenced in 25 individuals. From the 14 common polymorphisms identified, 12 tagging single-nucleotide polymorphisms (tSNPs) were genotyped in a cohort of 1,751 obese individuals. After adjustments for the effect of age, sex, diabetes, and medication, the C allele of SNP rs1051338 was associated with lower blood pressure (BP; systolic (SBP) P = 0.004; diastolic (DBP) P = 0.006). Three of the tested SNPs were associated with modifications of the plasma lipid profile. The G/G genotype of rs2071509 was associated with higher high-density lipoprotein cholesterol (HDL-C) levels (P = 0.009) and minor allele of rs1131706 was also associated with higher HDL-C (P = 0.004) and an association between rs3802656 and total cholesterol (total-C)/HDL-C ratio was identified (P = 0.04). These results thus suggest that LIPA polymorphisms contribute to the interindividual variability observed in obesity-related metabolic complications.
Obesity prevalence is growing in our population. Twin studies have estimated the heritability of dietary intakes to about 30%. The objective of this study was to verify whether polymorphisms in genes involved in fatty acid metabolism are associated with dietary fat intakes.
Seven hundred participants were recruited. A validated food frequency questionnaire was used to assess dietary intakes. PCR-RFLP and TAQMAN methodology were used to genotype PPARa Leu162Val, PPAR? Pro12Ala, PPARd -87T>C, PPARGC1a Gly482Ser, FASN Val1483Ile and SREBF1 c.*619C>G. Statistical analyses were executed with SAS statistical package.
Carriers of the Ala12 allele of PPAR? Pro12Ala polymorphism had higher intakes of total fat (p = 0.04). For FASN Val1483Ile polymorphism, significant gene-sex interaction effects were found for total fat and saturated fat intakes (p = 0.02 and p = 0.002, respectively). No significant difference in fat intakes was observed for PPARa Leu162Val, PPARd -87T>C, PPARGC1a Gly482Ser and SREBF1 c.*619C>G polymorphisms.
Polymorphisms in PPAR? and FASN seem to be associated with dietary fat intakes. Genetic variants are important to take into account when studying dietary intakes.
Low-density lipoprotein (LDL) size, a coronary heart disease risk factor, is influenced by both genetic and environmental factors. Results from the Quebec Family Study (QFS) revealed that the LDL peak particle diameter (LDL-PPD) aggregates in families with a heritability coefficient above 50% and is affected by a major quantitative trait locus on chromosome 17q (LOD=6.8). Complex segregation analyses have consistently demonstrated a major gene effect influencing LDL size. In the present study, we report a similar analysis in the QFS cohort, which suggests that a major gene explains 23% of the variance in age-body mass index and triglyceride-adjusted LDL-PPD. The most intuitive positional candidate gene on chromosome 17q is the apolipoprotein H gene. Direct sequencing of the promoter, coding regions, and exon-intron splicing boundaries of this gene revealed the presence of three missense mutations and two polymorphisms in the untranslated regions. Using family-based association tests, none of these variants was individually associated with LDL-PPD. However, analysis of the haplotypes constructed from the three missense mutations, suggested that one particular haplotype (frequency=20.9%) was associated with a significant increase in LDL-PPD trait values (p=0.046). Taken together, these results suggest the presence of a major gene effect influencing LDL-PPD and a positive association with a positional candidate gene located on chromosome 17q. Replication of the association between apolipoprotein H gene haplotype and LDL-PPD is required before reaching firm conclusion.
The promotion of physical activity among an overweight/obese population is an important challenge for clinical practitioners and researchers. In this regard, completing a questionnaire on cognitions could be a simple and easy strategy to increase levels of physical activity. Thus, the aim of the present study was to test the effect of completing a questionnaire based on the Theory of Planned Behavior (TPB) on the level of physical activity.
Overall, 452 overweight/obese adults were recruited and randomized to the experimental or control group. At baseline, participants completed a questionnaire on cognitions regarding their participation in leisure-time physical activity (experimental condition) versus a questionnaire on fruit and vegetable consumption (control condition). The questionnaires assessed the TPB variables that are beliefs, attitude, norm, perception of control, intention and a few additional variables from other theories. At three-month follow-up, leisure-time physical activity was self-reported by means of a short questionnaire. An analysis of covariance with baseline physical activity level as covariate was used to verify the effect of the intervention.
At follow-up, 373 participants completed the leisure-time physical activity questionnaire. The statistical analysis showed that physical activity participation was greater among participants in the experimental condition than those in the control condition (F(1,370)=6.85, p=.009, d=0.20).
Findings indicate that completing a TPB questionnaire has a significant positive impact on subsequent participation in physical activity. Consequently, asking individuals to complete such a questionnaire is a simple, inexpensive and easy strategy to increase the level of physical activity among overweight/obese adults.