Skip header and navigation

Refine By

3 records – page 1 of 1.

1H-MRS Measured Ectopic Fat in Liver and Muscle in Danish Lean and Obese Children and Adolescents.

https://arctichealth.org/en/permalink/ahliterature273208
Source
PLoS One. 2015;10(8):e0135018
Publication Type
Article
Date
2015
Author
Cilius Esmann Fonvig
Elizaveta Chabanova
Ehm Astrid Andersson
Johanne Dam Ohrt
Oluf Pedersen
Torben Hansen
Henrik S Thomsen
Jens-Christian Holm
Source
PLoS One. 2015;10(8):e0135018
Date
2015
Language
English
Publication Type
Article
Keywords
Adolescent
Anthropometry
Blood Glucose - analysis
Blood pressure
Body mass index
Body Weight
Cardiovascular Diseases - physiopathology
Child
Cross-Sectional Studies
Denmark
Dyslipidemias - blood
Fatty Liver - pathology
Female
Humans
Insulin - blood
Insulin Resistance
Intra-Abdominal Fat - pathology
Linear Models
Lipids - blood
Liver - metabolism - pathology
Male
Muscles - pathology
Overweight
Pediatric Obesity - blood - pathology
Proton Magnetic Resonance Spectroscopy
Puberty
Sex Factors
Subcutaneous Fat - pathology
Abstract
This cross sectional study aims to investigate the associations between ectopic lipid accumulation in liver and skeletal muscle and biochemical measures, estimates of insulin resistance, anthropometry, and blood pressure in lean and overweight/obese children.
Fasting plasma glucose, serum lipids, serum insulin, and expressions of insulin resistance, anthropometry, blood pressure, and magnetic resonance spectroscopy of liver and muscle fat were obtained in 327 Danish children and adolescents aged 8-18 years.
In 287 overweight/obese children, the prevalences of hepatic and muscular steatosis were 31% and 68%, respectively, whereas the prevalences in 40 lean children were 3% and 10%, respectively. A multiple regression analysis adjusted for age, sex, body mass index z-score (BMI SDS), and pubertal development showed that the OR of exhibiting dyslipidemia was 4.2 (95%CI: [1.8; 10.2], p = 0.0009) when hepatic steatosis was present. Comparing the simultaneous presence of hepatic and muscular steatosis with no presence of steatosis, the OR of exhibiting dyslipidemia was 5.8 (95%CI: [2.0; 18.6], p = 0.002). No significant associations between muscle fat and dyslipidemia, impaired fasting glucose, or blood pressure were observed. Liver and muscle fat, adjusted for age, sex, BMI SDS, and pubertal development, associated to BMI SDS and glycosylated hemoglobin, while only liver fat associated to visceral and subcutaneous adipose tissue and intramyocellular lipid associated inversely to high density lipoprotein cholesterol.
Hepatic steatosis is associated with dyslipidemia and liver and muscle fat depositions are linked to obesity-related metabolic dysfunctions, especially glycosylated hemoglobin, in children and adolescents, which suggest an increased cardiovascular disease risk.
Notes
Cites: Child Obes. 2012 Dec;8(6):533-4123181919
Cites: Int J Pediatr Obes. 2011 Aug;6(3-4):188-9621529264
Cites: Int J Obes (Lond). 2014 Jan;38(1):40-523828099
Cites: Pediatr Diabetes. 2014 May;15(3):151-6124754463
Cites: Semin Liver Dis. 2001;21(1):3-1611296695
Cites: Pediatr Clin North Am. 2011 Dec;58(6):1375-92, x22093857
Cites: Obesity (Silver Spring). 2012 Feb;20(2):371-521869763
Cites: AJR Am J Roentgenol. 2012 Jul;199(1):2-722733887
Cites: J Clin Endocrinol Metab. 2012 Jul;97(7):E1099-10522508709
Cites: Nutr Metab Cardiovasc Dis. 2009 Feb;19(2):146-5219171470
Cites: Pediatr Diabetes. 2014 Sep;15 Suppl 20:4-1725182305
Cites: Int J Obes Relat Metab Disord. 2001 Feb;25(2):177-8411410817
Cites: J Clin Endocrinol Metab. 2001 Dec;86(12):5755-6111739435
Cites: Diabetes. 2002 Apr;51(4):1022-711916921
Cites: Circulation. 2003 Mar 25;107(11):1562-612654618
Cites: Lancet. 2003 Sep 20;362(9388):951-714511928
Cites: Pediatrics. 2004 Aug;114(2 Suppl 4th Report):555-7615286277
Cites: Int J Obes Relat Metab Disord. 2004 Oct;28(10):1257-6315278103
Cites: Nutr Rev. 1981 Feb;39(2):43-557010232
Cites: Stat Med. 1992 Jul;11(10):1305-191518992
Cites: Am J Clin Nutr. 1993 Oct;58(4):463-78379501
Cites: Diabetes. 1997 Jun;46(6):983-89166669
Cites: Diabetologia. 1999 Jan;42(1):113-610027589
Cites: Diabetes. 1999 Oct;48(10):2039-4410512371
Cites: Obesity (Silver Spring). 2006 Mar;14(3):357-6716648604
Cites: Pediatrics. 2006 Oct;118(4):1388-9317015527
Cites: Diabetes Care. 2007 Jan;30(1):89-9417192339
Cites: Eur J Clin Nutr. 2007 Jul;61(7):877-8317151586
Cites: Circulation. 2008 Jul 15;118(3):277-8318591439
Cites: Diabetes Care. 2009 Feb;32(2):342-718957533
Cites: J Clin Endocrinol Metab. 2009 Sep;94(9):3440-719531593
Cites: Am J Epidemiol. 2010 Jun 1;171(11):1195-20220457571
Cites: Eur J Endocrinol. 2010 Sep;163(3):413-920584996
Cites: J Clin Endocrinol Metab. 2010 Dec;95(12):5189-9820829185
Cites: J Clin Res Pediatr Endocrinol. 2010;2(3):100-621274322
Cites: Diabetologia. 2011 Apr;54(4):869-7521181394
Cites: Abdom Imaging. 2013 Apr;38(2):315-922736224
PubMed ID
26252778 View in PubMed
Less detail

A genome-wide association study of thyroid stimulating hormone and free thyroxine in Danish children and adolescents.

https://arctichealth.org/en/permalink/ahliterature285215
Source
PLoS One. 2017;12(3):e0174204
Publication Type
Article
Date
2017
Author
Tenna Ruest Haarmark Nielsen
Emil Vincent Rosenbaum Appel
Mathilde Svendstrup
Johanne Dam Ohrt
Maria Dahl
Cilius Esmann Fonvig
Mette Hollensted
Christian Theil Have
Haja N Kadarmideen
Oluf Pedersen
Torben Hansen
Jens-Christian Holm
Niels Grarup
Source
PLoS One. 2017;12(3):e0174204
Date
2017
Language
English
Publication Type
Article
Keywords
Adolescent
Adult
Age Factors
Body mass index
Child
Child, Preschool
Denmark
Female
Genetic Loci - genetics - physiology
Genetic Markers - genetics
Genetic Predisposition to Disease - genetics
Humans
Male
Pediatric Obesity - blood - genetics
Polymorphism, Single Nucleotide - genetics
Thyrotropin - blood
Thyroxine - blood
Young Adult
Abstract
Hypothyroidism is associated with obesity, and thyroid hormones are involved in the regulation of body composition, including fat mass. Genome-wide association studies (GWAS) in adults have identified 19 and 6 loci associated with plasma concentrations of thyroid stimulating hormone (TSH) and free thyroxine (fT4), respectively.
This study aimed to identify and characterize genetic variants associated with circulating TSH and fT4 in Danish children and adolescents and to examine whether these variants associate with obesity.
Genome-wide association analyses of imputed genotype data with fasting plasma concentrations of TSH and fT4 from a population-based sample of Danish children, adolescents, and young adults, and a group of children, adolescents, and young adults with overweight and obesity were performed (N = 1,764, mean age = 12.0 years [range 2.5-24.7]). Replication was performed in additional comparable samples (N = 2,097, mean age = 11.8 years [1.2-22.8]). Meta-analyses, using linear additive fixed-effect models, were performed on the results of the discovery and replication analyses.
No novel loci associated with TSH or fT4 were identified. Four loci previously associated with TSH in adults were confirmed in this study population (PDE10A (rs2983511: ß = 0.112SD, p = 4.8 · 10-16), FOXE1 (rs7847663: ß = 0.223SD, p = 1.5 · 10-20), NR3C2 (rs9968300: ß = 0.194SD), p = 2.4 · 10-11), VEGFA (rs2396083: ß = 0.088SD, p = 2.2 · 10-10)). Effect sizes of variants known to associate with TSH or fT4 in adults showed a similar direction of effect in our cohort of children and adolescents, 11 of which were associated with TSH or fT4 in our study (p
Notes
Cites: J Clin Res Pediatr Endocrinol. 2016 Mar 5;8(1):26-3126758817
Cites: J Clin Endocrinol Metab. 2002 Mar;87(3):1068-7211889165
Cites: J Clin Endocrinol Metab. 2007 Dec;92(12):4575-8217911171
Cites: West J Med. 2000 Feb;172(2):102-610693372
Cites: Pediatr Res. 2013 Apr;73(4 Pt 1):484-9123344678
Cites: Nat Genet. 2009 Apr;41(4):460-419198613
Cites: Eur J Clin Nutr. 1990 Jan;44(1):45-602354692
Cites: Eur J Cardiovasc Prev Rehabil. 2003 Oct;10(5):377-8614663300
Cites: J Clin Endocrinol Metab. 1997 Aug;82(8):2497-5029253324
Cites: Horm Res Paediatr. 2010;73(3):193-720197672
Cites: J Clin Endocrinol Metab. 2016 Jan;101(1):206-1326583586
Cites: PLoS Genet. 2011 Feb;7(2):e100130721379325
Cites: Nat Genet. 2007 Jul;39(7):906-1317572673
Cites: PLoS One. 2012;7(4):e3444222493691
Cites: Hum Genet. 2012 Sep;131(9):1495-50522673963
Cites: Obesity (Silver Spring). 2011 Dec;19(12):2436-921779088
Cites: Am J Hum Genet. 2008 Jun;82(6):1270-8018514160
Cites: J Clin Endocrinol Metab. 2002 Feb;87(2):489-9911836274
Cites: Hum Mol Genet. 2016 Jan 15;25(2):389-40326604143
Cites: PLoS One. 2014 Dec 01;9(12):e11130125436638
Cites: Nat Genet. 2010 Nov;42(11):949-6020935629
Cites: Int J Pediatr Obes. 2011 Aug;6(3-4):188-9621529264
Cites: Am J Hum Genet. 2011 Oct 7;89(4):529-4221981779
Cites: JAMA. 2004 Jan 14;291(2):228-3814722150
Cites: Eur J Endocrinol. 2012 Nov;167(5):719-2622956557
Cites: Endocr Pract. 2010 Mar-Apr;16(2):187-9019833586
Cites: Horm Res. 2009;71(3):155-6119188740
Cites: Bioinformatics. 2015 Nov 1;31(21):3555-726139635
Cites: Nat Commun. 2015 Mar 06;6:568125743335
Cites: Eur J Endocrinol. 2012 Feb;166(2):255-6022084153
Cites: Nat Commun. 2014 Jun 13;5:393425653097
Cites: PLoS Genet. 2013;9(2):e100326623408906
Cites: Am J Physiol Endocrinol Metab. 2007 Mar;292(3):E765-7017090750
Cites: Int J Obes Relat Metab Disord. 2001 Feb;25(2):177-8411410817
Cites: Am J Hum Genet. 2007 Sep;81(3):559-7517701901
Cites: Nat Genet. 2012 Jan 22;44(3):319-2222267200
Cites: Eur J Endocrinol. 2011 May;164(5):773-8021317282
Cites: J Clin Endocrinol Metab. 2004 Mar;89(3):1181-715001606
Cites: Pediatr Obes. 2016 Dec;11(6):551-55826910299
Cites: Hum Mol Genet. 2012 Jul 15;21(14):3275-8222494929
Cites: Hum Mol Genet. 2009 May 1;18(9):1704-1319244275
Cites: Clin Chem Lab Med. 2001 Oct;39(10):973-911758614
Cites: J Pediatr Endocrinol Metab. 2013;26(7-8):703-823612647
Cites: Endocr Rev. 2015 Apr;36(2):214-4425751422
PubMed ID
28333968 View in PubMed
Less detail

Subclinical Hypothyroidism in Danish Lean and Obese Children and Adolescents.

https://arctichealth.org/en/permalink/ahliterature283982
Source
J Clin Res Pediatr Endocrinol. 2017 Mar 01;9(1):8-16
Publication Type
Article
Date
Mar-01-2017
Author
Maria Dahl
Johanne Dam Ohrt
Cilius Esmann Fonvig
Julie Tonsgaard Kloppenborg
Oluf Pedersen
Torben Hansen
Jens Christian Holm
Source
J Clin Res Pediatr Endocrinol. 2017 Mar 01;9(1):8-16
Date
Mar-01-2017
Language
English
Publication Type
Article
Keywords
Adolescent
Body mass index
Body Weight
Child
Cross-Sectional Studies
Denmark - epidemiology
Female
Humans
Hypothyroidism - blood - epidemiology - physiopathology
Linear Models
Male
Obesity - blood - physiopathology
Overweight - blood - physiopathology
Prevalence
Registries - statistics & numerical data
Thyrotropin - blood
Thyroxine - blood
Triiodothyronine - blood
Waist Circumference
Abstract
Thyroid abnormalities are common in obese children. The aim of the present study was to examine the prevalence of subclinical hypothyroidism (SH) and to determine how circulating thyroid hormone concentrations correlate with anthropometrics in Danish lean and obese children and adolescents.
In this cross-sectional study, we included 3006 children and adolescents, aged 6-18 years, from the Registry of the Danish Childhood Obesity Biobank. The overweight/obese group (n=1796) consisted of study participants with a body mass index (BMI) standard deviation score (SDS) =1.28. The control group (n=1210) comprised lean children with a BMI SDS 0.5 (p=0.0003).
The prevalence of SH was higher among overweight/obese study participants. The positive correlations of circulating TSH and fT4 with WHtR suggest that central obesity, independent of the overall degree of obesity, augments the risk of concurrent thyroid abnormalities in children and adolescents with obesity.
Notes
Cites: Horm Res. 2008;70(1):51-718493150
Cites: Arch Dis Child. 2002 Oct;87(4):320-312244007
Cites: BMJ. 2000 May 6;320(7244):1240-310797032
Cites: Eur J Endocrinol. 2011 Jul;165(1):11-521543376
Cites: Horm Metab Res. 2000 Nov-Dec;32(11-12):468-7411246811
Cites: West J Med. 2000 Feb;172(2):102-610693372
Cites: Clin Endocrinol Metab. 1984 Nov;13(3):581-956391756
Cites: J Atheroscler Thromb. 2002;9(3):127-3212226553
Cites: Am J Clin Nutr. 1993 Oct;58(4):463-78379501
Cites: Swiss Med Wkly. 2007 Jul 28;137(29-30):431-417705106
Cites: Ther Adv Endocrinol Metab. 2015 Apr;6(2):51-525941562
Cites: BMC Pediatr. 2010 Oct 11;10:7320937123
Cites: Eur J Endocrinol. 2009 Mar;160(3):403-819073832
Cites: Am J Cardiol. 2009 Sep 1;104(5):721-419699351
Cites: Arch Dis Child. 1969 Jun;44(235):291-3035785179
Cites: BMC Endocr Disord. 2010 May 04;10:820441588
Cites: Clin Endocrinol (Oxf). 2007 Aug;67(2):265-917547687
Cites: Horm Res. 2000;54(1):14-911182630
Cites: J Clin Endocrinol Metab. 2002 Feb;87(2):489-9911836274
Cites: J Clin Endocrinol Metab. 2006 Aug;91(8):3088-9116684827
Cites: Clin Endocrinol (Oxf). 2011 Jun;74(6):769-7521521278
Cites: JAMA. 2004 Jan 14;291(2):228-3814722150
Cites: Clin Endocrinol (Oxf). 2013 Sep;79(3):424-823311698
Cites: Horm Res. 2009;71(3):155-6119188740
Cites: Mol Cell Endocrinol. 2010 Mar 25;316(2):165-7119540303
Cites: Clin Chim Acta. 2012 Feb 18;413(3-4):396-40522130312
Cites: Arch Dis Child. 1970 Feb;45(239):13-235440182
Cites: J Biol Chem. 2000 Nov 17;275(46):36124-3310967095
Cites: Int J Obes Relat Metab Disord. 2001 Feb;25(2):177-8411410817
Cites: Stat Med. 1992 Jul;11(10):1305-191518992
Cites: Metabolism. 1984 Mar;33(3):262-56694567
Cites: J Hum Hypertens. 2010 Feb;24(2):134-819554027
Cites: Clin Chem Lab Med. 2001 Oct;39(10):973-911758614
Cites: J Pediatr Endocrinol Metab. 2013;26(5-6):531-723525871
Cites: Int J Pediatr Obes. 2006;1(4):217-2117907328
Cites: J Pediatr Endocrinol Metab. 2013;26(7-8):703-823612647
Cites: Arch Dis Child. 2006 Apr;91(4):283-616551784
PubMed ID
27611730 View in PubMed
Less detail