Skip header and navigation

4 records – page 1 of 1.

Future climate change is predicted to shift long-term persistence zones in the cold-temperate kelp Laminaria hyperborea.

https://arctichealth.org/en/permalink/ahliterature268031
Source
Mar Environ Res. 2015 Nov 11;
Publication Type
Article
Date
Nov-11-2015
Author
Jorge Assis
Ana Vaz Lucas
Ignacio Bárbara
Ester Álvares Serrão
Source
Mar Environ Res. 2015 Nov 11;
Date
Nov-11-2015
Language
English
Publication Type
Article
Abstract
Global climate change is shifting species distributions worldwide. At rear edges (warmer, low latitude range margins), the consequences of small variations in environmental conditions can be magnified, producing large negative effects on species ranges. A major outcome of shifts in distributions that only recently received attention is the potential to reduce the levels of intra-specific diversity and consequently the global evolutionary and adaptive capacity of species to face novel disturbances. This is particularly important for low dispersal marine species, such as kelps, that generally retain high and unique genetic diversity at rear ranges resulting from long-term persistence, while ranges shifts during climatic glacial/interglacial cycles. Using ecological niche modelling, we (1) infer the major environmental forces shaping the distribution of a cold-temperate kelp, Laminaria hyperborea (Gunnerus) Foslie, and we (2) predict the effect of past climate changes in shaping regions of long-term persistence (i.e., climatic refugia), where this species might hypothetically harbour higher genetic diversity given the absence of bottlenecks and local extinctions over the long term. We further (3) assessed the consequences of future climate for the fate of L. hyperborea using different scenarios of greenhouse gas emissions (RCP 2.6 and RCP 8.5). Results show NW Iberia, SW Ireland and W English Channel, Faroe Islands and S Iceland, as regions where L. hyperborea may have persisted during past climate extremes until present day. All predictions for the future showed expansions to northern territories coupled with the significant loss of suitable habitats at low latitude range margins, where long-term persistence was inferred (e.g., NW Iberia). This pattern was particularly evident in the most agressive scenario of climate change (RCP 8.5), likely driving major biodiversity loss, changes in ecosystem functioning and the impoverishment of the global gene pool of L. hyperborea. Because no genetic baseline is currently available for this species, our results may represent a first step in informing conservation and mitigation strategies.
PubMed ID
26608411 View in PubMed
Less detail

Glacial vicariance drives phylogeographic diversification in the amphi-boreal kelp Saccharina latissima.

https://arctichealth.org/en/permalink/ahliterature296215
Source
Sci Rep. 2018 01 18; 8(1):1112
Publication Type
Journal Article
Research Support, Non-U.S. Gov't
Date
01-18-2018
Author
João Neiva
Cristina Paulino
Mette M Nielsen
Dorte Krause-Jensen
Gary W Saunders
Jorge Assis
Ignacio Bárbara
Éric Tamigneaux
Licínia Gouveia
Tânia Aires
Núria Marbà
Annette Bruhn
Gareth A Pearson
Ester A Serrão
Author Affiliation
CCMAR- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal. jmneiva@ualg.pt.
Source
Sci Rep. 2018 01 18; 8(1):1112
Date
01-18-2018
Language
English
Publication Type
Journal Article
Research Support, Non-U.S. Gov't
Keywords
Biodiversity
DNA, Mitochondrial
Ecosystem
Electron Transport Complex IV - genetics
Environment
Genetic Variation
Ice Cover
Kelp - classification - genetics
Microsatellite Repeats
Phylogeny
Phylogeography
Abstract
Glacial vicariance is regarded as one of the most prevalent drivers of phylogeographic structure and speciation among high-latitude organisms, but direct links between ice advances and range fragmentation have been more difficult to establish in marine than in terrestrial systems. Here we investigate the evolution of largely disjunct (and potentially reproductively isolated) phylogeographic lineages within the amphi-boreal kelp Saccharina latissima s. l. Using molecular data (COI, microsatellites) we confirm that S. latissima comprises also the NE Pacific S. cichorioides complex and is composed of divergent lineages with limited range overlap and genetic admixture. Only a few genetic hybrids were detected throughout a Canadian Arctic/NW Greenland contact zone. The degree of genetic differentiation and sympatric isolation of phylogroups suggest that S. latissima s. l. represents a complex of incipient species. Phylogroup distributions compared with paleo-environmental reconstructions of the cryosphere further suggest that diversification within S. latissima results from chronic glacial isolation in disjunct persistence areas intercalated with ephemeral interglacial poleward expansions and admixture at high-latitude (Arctic) contact zones. This study thus supports a role for glaciations not just in redistributing pre-existing marine lineages but also as a speciation pump across multi-glacial cycles for marine organisms otherwise exhibiting cosmopolite amphi-boreal distributions.
Notes
Cites: Science. 2003 Jun 6;300(5625):1563-5 PMID 12791991
Cites: Proc Biol Sci. 2014 Nov 22;281(1795): PMID 25297864
Cites: Nature. 2001 Mar 22;410(6827):453-7 PMID 11260709
Cites: Genetics. 2003 Aug;164(4):1567-87 PMID 12930761
Cites: Syst Biol. 2012 May;61(3):539-42 PMID 22357727
Cites: BMC Bioinformatics. 2010 Jul 28;11:401 PMID 20667077
Cites: BMC Evol Biol. 2013 Mar 19;13:67 PMID 23510113
Cites: BMC Ecol. 2013 Mar 16;13:9 PMID 23497234
Cites: Mol Phylogenet Evol. 2001 Nov;21(2):231-43 PMID 11697918
Cites: Trends Ecol Evol. 1992 Jun;7(6):183-9 PMID 21236004
Cites: Ecol Lett. 2013 Oct;16(10):1258-66 PMID 23890483
Cites: Trends Ecol Evol. 2016 Dec;31(12 ):916-926 PMID 27640783
Cites: J Mol Evol. 1985;22(2):160-74 PMID 3934395
Cites: Philos Trans R Soc Lond B Biol Sci. 2010 Nov 27;365(1558):3655-66 PMID 20980314
Cites: Mol Ecol. 2013 Jan;22(2):409-22 PMID 23206322
Cites: J Phycol. 2016 Aug;52(4):523-31 PMID 27151230
Cites: Science. 2009 Aug 7;325(5941):710-4 PMID 19661421
Cites: Proc Biol Sci. 2016 Nov 30;283(1843): PMID 27903870
Cites: Glob Chang Biol. 2012 Oct;18(10 ):2981-2994 PMID 28741817
Cites: Am Nat. 2005 Nov;166(5):581-91 PMID 16224723
Cites: Heredity (Edinb). 2009 Mar;102(3):214-7 PMID 19142201
Cites: Mol Biol Evol. 2016 Jul;33(7):1870-4 PMID 27004904
Cites: Biol Lett. 2009 Apr 23;5(2):258-61 PMID 19126528
Cites: Mol Biol Evol. 1999 Jan;16(1):37-48 PMID 10331250
Cites: BMC Plant Biol. 2012 Jul 11;12:108 PMID 22784095
Cites: PLoS One. 2016 Nov 21;11(11):e0166983 PMID 27870888
Cites: Science. 2001 Apr 27;292(5517):679-86 PMID 11326090
Cites: PLoS One. 2013;8(2):e57125 PMID 23431400
Cites: Bioinformatics. 2008 Dec 1;24(23):2713-9 PMID 18842597
Cites: Mol Ecol. 2007 Dec;16(23):5030-43 PMID 17944848
Cites: Mol Phylogenet Evol. 2007 Aug;44(2):634-48 PMID 17544704
Cites: J Mol Evol. 1980 Dec;16(2):111-20 PMID 7463489
Cites: BMC Evol Biol. 2012 Jun 06;12:78 PMID 22672720
Cites: J Hered. 2009 May-Jun;100(3):394-7 PMID 19126639
Cites: Mol Ecol. 2014 Jun;23(11):2797-810 PMID 24766057
Cites: Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3249-53 PMID 19204277
Cites: BMC Evol Biol. 2015 Nov 02;15:237 PMID 26525408
Cites: Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9115-20 PMID 10922067
Cites: Philos Trans R Soc Lond B Biol Sci. 2004 Feb 29;359(1442):183-95; discussion 195 PMID 15101575
Cites: Syst Biol. 2010 May;59(3):307-21 PMID 20525638
Cites: Nat Methods. 2012 Jul 30;9(8):772 PMID 22847109
PubMed ID
29348650 View in PubMed
Less detail

Glacial vicariance drives phylogeographic diversification in the amphi-boreal kelp Saccharina latissima.

https://arctichealth.org/en/permalink/ahliterature288222
Source
Sci Rep. 2018 Jan 18;8(1):1112
Publication Type
Article
Date
Jan-18-2018
Author
João Neiva
Cristina Paulino
Mette M Nielsen
Dorte Krause-Jensen
Gary W Saunders
Jorge Assis
Ignacio Bárbara
Éric Tamigneaux
Licínia Gouveia
Tânia Aires
Núria Marbà
Annette Bruhn
Gareth A Pearson
Ester A Serrão
Source
Sci Rep. 2018 Jan 18;8(1):1112
Date
Jan-18-2018
Language
English
Publication Type
Article
Abstract
Glacial vicariance is regarded as one of the most prevalent drivers of phylogeographic structure and speciation among high-latitude organisms, but direct links between ice advances and range fragmentation have been more difficult to establish in marine than in terrestrial systems. Here we investigate the evolution of largely disjunct (and potentially reproductively isolated) phylogeographic lineages within the amphi-boreal kelp Saccharina latissima s. l. Using molecular data (COI, microsatellites) we confirm that S. latissima comprises also the NE Pacific S. cichorioides complex and is composed of divergent lineages with limited range overlap and genetic admixture. Only a few genetic hybrids were detected throughout a Canadian Arctic/NW Greenland contact zone. The degree of genetic differentiation and sympatric isolation of phylogroups suggest that S. latissima s. l. represents a complex of incipient species. Phylogroup distributions compared with paleo-environmental reconstructions of the cryosphere further suggest that diversification within S. latissima results from chronic glacial isolation in disjunct persistence areas intercalated with ephemeral interglacial poleward expansions and admixture at high-latitude (Arctic) contact zones. This study thus supports a role for glaciations not just in redistributing pre-existing marine lineages but also as a speciation pump across multi-glacial cycles for marine organisms otherwise exhibiting cosmopolite amphi-boreal distributions.
Notes
Cites: Science. 2003 Jun 6;300(5625):1563-512791991
Cites: Proc Biol Sci. 2014 Nov 22;281(1795):25297864
Cites: Nature. 2001 Mar 22;410(6827):453-711260709
Cites: Genetics. 2003 Aug;164(4):1567-8712930761
Cites: Syst Biol. 2012 May;61(3):539-4222357727
Cites: BMC Bioinformatics. 2010 Jul 28;11:40120667077
Cites: BMC Evol Biol. 2013 Mar 19;13:6723510113
Cites: BMC Ecol. 2013 Mar 16;13:923497234
Cites: Mol Phylogenet Evol. 2001 Nov;21(2):231-4311697918
Cites: Trends Ecol Evol. 1992 Jun;7(6):183-921236004
Cites: Ecol Lett. 2013 Oct;16(10):1258-6623890483
Cites: Trends Ecol Evol. 2016 Dec;31(12 ):916-92627640783
Cites: J Mol Evol. 1985;22(2):160-743934395
Cites: Philos Trans R Soc Lond B Biol Sci. 2010 Nov 27;365(1558):3655-6620980314
Cites: Mol Ecol. 2013 Jan;22(2):409-2223206322
Cites: J Phycol. 2016 Aug;52(4):523-3127151230
Cites: Science. 2009 Aug 7;325(5941):710-419661421
Cites: Proc Biol Sci. 2016 Nov 30;283(1843):27903870
Cites: Glob Chang Biol. 2012 Oct;18(10 ):2981-299428741817
Cites: Am Nat. 2005 Nov;166(5):581-9116224723
Cites: Heredity (Edinb). 2009 Mar;102(3):214-719142201
Cites: Mol Biol Evol. 2016 Jul;33(7):1870-427004904
Cites: Biol Lett. 2009 Apr 23;5(2):258-6119126528
Cites: Mol Biol Evol. 1999 Jan;16(1):37-4810331250
Cites: BMC Plant Biol. 2012 Jul 11;12:10822784095
Cites: PLoS One. 2016 Nov 21;11(11):e016698327870888
Cites: Science. 2001 Apr 27;292(5517):679-8611326090
Cites: PLoS One. 2013;8(2):e5712523431400
Cites: Bioinformatics. 2008 Dec 1;24(23):2713-918842597
Cites: Mol Ecol. 2007 Dec;16(23):5030-4317944848
Cites: Mol Phylogenet Evol. 2007 Aug;44(2):634-4817544704
Cites: J Mol Evol. 1980 Dec;16(2):111-207463489
Cites: BMC Evol Biol. 2012 Jun 06;12:7822672720
Cites: J Hered. 2009 May-Jun;100(3):394-719126639
Cites: Mol Ecol. 2014 Jun;23(11):2797-81024766057
Cites: Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3249-5319204277
Cites: BMC Evol Biol. 2015 Nov 02;15:23726525408
Cites: Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9115-2010922067
Cites: Philos Trans R Soc Lond B Biol Sci. 2004 Feb 29;359(1442):183-95; discussion 19515101575
Cites: Syst Biol. 2010 May;59(3):307-2120525638
Cites: Nat Methods. 2012 Jul 30;9(8):77222847109
PubMed ID
29348650 View in PubMed
Less detail

A multilocus species delimitation reveals a striking number of species of coralline algae forming Maerl in the OSPAR maritime area.

https://arctichealth.org/en/permalink/ahliterature261822
Source
PLoS One. 2014;9(8):e104073
Publication Type
Article
Date
2014
Author
Cristina Pardo
Lua Lopez
Viviana Peña
Jazmin Hernández-Kantún
Line Le Gall
Ignacio Bárbara
Rodolfo Barreiro
Source
PLoS One. 2014;9(8):e104073
Date
2014
Language
English
Publication Type
Article
Keywords
Atlantic Ocean
Conservation of Natural Resources
DNA Barcoding, Taxonomic
Genetic Loci - genetics
Phylogeny
Rhodophyta - classification - genetics
Abstract
Maerl beds are sensitive biogenic habitats built by an accumulation of loose-lying, non-geniculate coralline algae. While these habitats are considered hot-spots of marine biodiversity, the number and distribution of maerl-forming species is uncertain because homoplasy and plasticity of morphological characters are common. As a result, species discrimination based on morphological features is notoriously challenging, making these coralline algae the ideal candidates for a DNA barcoding study. Here, mitochondrial (COI-5P DNA barcode fragment) and plastidial (psbA gene) sequence data were used in a two-step approach to delimit species in 224 collections of maerl sampled from Svalbard (78?96'N) to the Canary Islands (28?64'N) that represented 10 morphospecies from four genera and two families. First, the COI-5P dataset was analyzed with two methods based on distinct criteria (ABGD and GMYC) to delineate 16 primary species hypotheses (PSHs) arranged into four major lineages. Second, chloroplast (psbA) sequence data served to consolidate these PSHs into 13 secondary species hypotheses (SSHs) that showed biologically plausible ranges. Using several lines of evidence (e.g. morphological characters, known species distributions, sequences from type and topotype material), six SSHs were assigned to available species names that included the geographically widespread Phymatolithon calcareum, Lithothamnion corallioides, and L. glaciale; possible identities of other SSHs are discussed. Concordance between SSHs and morphospecies was minimal, highlighting the convenience of DNA barcoding for an accurate identification of maerl specimens. Our survey indicated that a majority of maerl forming species have small distribution ranges and revealed a gradual replacement of species with latitude.
Notes
Cites: Proc Biol Sci. 2013 Feb 22;280(1753):2012266023269854
Cites: Mol Phylogenet Evol. 2013 May;67(2):529-4023467004
Cites: Nat Methods. 2012 Aug;9(8):77222847109
Cites: Methods Mol Biol. 2012;858:207-2222684958
Cites: Mol Ecol. 2012 Jun;21(11):2671-9122494453
Cites: Mol Ecol. 2012 Apr;21(8):1864-7721883587
Cites: Mol Phylogenet Evol. 2011 Dec;61(3):697-71321851858
Cites: BMC Plant Biol. 2010;10:25821092229
Cites: Biol Direct. 2010;5:4720673351
Cites: Syst Biol. 2009 Jun;58(3):298-31120525585
Cites: Bioinformatics. 2009 Jun 1;25(11):1451-219346325
Cites: Conserv Biol. 2006 Oct;20(5):1545-717002772
Cites: Syst Biol. 2006 Aug;55(4):595-60916967577
Cites: Philos Trans R Soc Lond B Biol Sci. 2005 Oct 29;360(1462):1879-8816214745
Cites: Syst Biol. 2003 Oct;52(5):696-70414530136
Cites: Proc Biol Sci. 2003 Feb 7;270(1512):313-2112614582
Cites: Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11724-912172008
Cites: Mol Phylogenet Evol. 2014 Feb;71:79-9324280211
Cites: Syst Biol. 2013 Sep;62(5):707-2423681854
Cites: Mol Ecol. 2012 Sep;21(18):4422-3622891635
PubMed ID
25111057 View in PubMed
Less detail