Rift Valley fever virus is an emerging mosquito-borne virus that causes infections in animals and human beings in Africa and the Arabian Peninsula. Outbreaks of Rift Valley fever lead to mass abortions in livestock, but such abortions have not been identified in human bezings. Our aim was to investigate the cause of miscarriages in febrile pregnant women in an area endemic for Rift Valley fever.
Pregnant women with fever of unknown origin who attended the governmental hospital of Port Sudan, Sudan, between June 30, 2011, and Nov 17, 2012, were sampled at admission and included in this cross-sectional study. Medical records were retrieved and haematological tests were done on patient samples. Presence of viral RNA as well as antibodies against a variety of viruses were analysed. Any association of viral infections, symptoms, and laboratory parameters to pregnancy outcome was investigated using Pearson's ?(2) test.
Of 130 pregnant women with febrile disease, 28 were infected with Rift Valley fever virus and 31 with chikungunya virus, with typical clinical and laboratory findings for the infection in question. 15 (54%) of 28 women with an acute Rift Valley fever virus infection had miscarriages compared with 12 (12%) of 102 women negative for Rift Valley fever virus (p
Hantaviruses pose a public health concern worldwide causing haemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). Puumala virus (PUUV) is the most prevalent hantavirus in Central and Northern Europe, and causes a mild form of HFRS, also known as nephropathia epidemica (NE). In nature, the main host of PUUV is the bank vole (Myodes glareolus), and transmission to humans occurs through inhalation of aerosols from rodent excreta. Nephropathia epidemica is particularly prevalent in Nordic countries, however, few studies of PUUV have been performed in Norway. The aim of this study was to analyse the dynamics of PUUV in Norway and compare with bank vole population dynamics, and also to complement the current diagnostic methodology of NE in Norway. Our results showed a significant seasonal and geographical variation of NE, and a general parallel peak trend between bank vole population densities and human NE incidence. A real-time and a nested PCR were successfully established as an invaluable diagnostic tool, with detection and sequencing of PUUV in a human serum sample for the first time in Norway. Phylogenetic analysis showed clustering of the obtained human sample with previous Norwegian bank vole isolates.
The bank vole (Clethrionomys glareolus) is the natural reservoir of Puumala virus (PUUV), a species in the genus Hantavirus. PUUV is the etiologic agent of nephropathia epidemica, a mild form of hemorrhagic fever with renal syndrome. Factors that influence hantavirus transmission within host populations are not well understood. We evaluated a number of factors influencing on the association of increased PUUV infection in bank voles captured in a region in northern Sweden endemic for the virus. Logistic regression showed four factors that together correctly predicted 80% of the model outcome: age, body mass index, population phase during sampling (increase, peak, or decline/low), and gender. This analysis highlights the importance of population demography in the successful circulation of hantavirus. The chance of infection was greatest during the peak of the population cycle, implying that the likelihood of exposure to hantavirus increases with increasing population density.
Mosquito-borne alphaviruses have the potential to cause large outbreaks throughout the world. Here we investigated the causative agent of an unexpected Sindbis virus (SINV) outbreak during August-September, 2013, in a previously nonendemic region of Sweden. Mosquitoes were collected using carbon dioxide-baited CDC traps at locations close to human cases. The mosquitoes were initially screened as large pools by SINV-specific quantitative RT-PCR, and the SINV-positive mosquitoes were species determined by single-nucleotide polymorphism (SNP) analysis, followed by sequencing the barcoding region of the cytochrome oxidase I gene. The proportion of the collected mosquitoes was determined by a metabarcoding strategy. By using novel strategies for PCR screening and genetic typing, a new SINV strain, L�??�?�¶v�??�?�¥nger, was isolated from a pool of 1600 mosquitoes composed of Culex, Culiseta, and Aedes mosquitoes as determined by metabarcoding. The SINV-positive mosquito Culiseta morsitans was identified by SNP analysis and sequencing. After whole-genome sequencing and phylogenetic analysis, the SINV L�??�?�¶v�??�?�¥nger isolate was shown to be most closely similar to recent Finnish SINV isolates. In conclusion, within a few weeks, we were able to detect and isolate a novel SINV strain and identify the mosquito vector during a sudden SINV outbreak.
Mosquito-borne viruses have a widespread distribution across the globe and are known to pose serious threats to human and animal health. The maintenance and dissemination of these viruses in nature are driven through horizontal and vertical transmission. In the temperate climate of northern Sweden, there is a dearth of knowledge on whether mosquito-borne viruses that occur are transmitted transovarially. To gain a better understanding of mosquito-borne virus circulation and maintenance, mosquito larvae were sampled in northern Sweden during the first and second year after a large outbreak of Ockelbo disease in 2013 caused by Sindbis virus (SINV).
A total of 3123 larvae were sampled during the summers of 2014 and 2015 at multiple sites in northern Sweden. The larvae were homogenized and screened for viruses using RT-PCR and sequencing. Species identification of selected larvae was performed by genetic barcoding targeting the cytochrome C oxidase subunit I gene.
SINV RNA was detected in mosquito larvae of three different species, Ochlerotatus (Oc.) communis, Oc. punctor, and Oc. diantaeus. Inkoo virus (INKV) RNA was detected in Oc. communis larvae. This finding suggested that these mosquitoes could support transovarial transmission of SINV and INKV. Detection of virus in mosquito larva may serve as an early warning for emerging arboviral diseases and add information to epidemiological investigations before, during, and after outbreaks. Furthermore, our results demonstrated the relevance of genetic barcoding as an attractive and effective method for mosquito larva typing. However, further mosquito transmission studies are needed to ascertain the possible role of different mosquito species and developmental stages in the transmission cycle of arboviruses.
Notes
Cites: Am J Trop Med Hyg. 1989 Sep;41(3):355-632572178
Hantavirus infections are emerging infections that cause either Hantavirus pulmonary syndrome or haemorrhagic fever with renal syndrome (HFRS). A recent Swedish outbreak of nephropathia epidemica, a European HFRS, was analysed to study the patient flow and clinical picture and to investigate the value of an early diagnosis in general practice. Design. In a retrospective design, medical records of verified cases of Hantavirus infection were studied.
The study was conducted in the county of Norrbotten, Sweden.
Data from Hantavirus patients diagnosed between 2006 and 2008 were analysed.
Demographic data, level of care, treatment, clinical symptoms, and laboratory findings were obtained.
In total, 456 cases were included (58% males and 42% females). The majority of patients first saw their general practitioner and were exclusively treated in general practice (83% and 56%, respectively). When diagnosed correctly at the first visit, antibiotics and hospitalization were significantly lowered compared with delayed diagnosis (14% vs. 53% and 30% vs. 54%, respectively; p
Sindbis virus (SINV) is a mosquito-borne Alphavirus known to infect birds and cause intermittent outbreaks among humans in Fenno-Scandia. In Sweden, the endemic area has mainly been in central Sweden. Recently, SINV infections have emerged to northern Sweden, but the vectorial efficiency for SINV of mosquito species in this northern region has not yet been ascertained.
Mosquito larvae were sampled from the Umeå region in northern Sweden and propagated in a laboratory to adult stage to investigate the infection, dissemination, and transmission efficiency of SINV in mosquitoes.
The mosquito species were identified by DNA barcoding of the cytochrome oxidase I gene. Culex torrentium was the most abundant (82.2%) followed by Culex pipiens (14.4%), Aedes annulipes (1.1%), Anopheles claviger (1.1%), Culiseta bergrothi (1.1%), or other unidentified species (1.1%). Mosquitoes were fed with SINV-infected blood and monitored for 29 days to determine the viral extrinsic incubation period. Infection and dissemination were determined by RT-qPCR screening of dissected body parts of individual mosquitoes. Viral transmission was determined from saliva collected from individual mosquitoes at 7, 14, and 29 days. SINV was detected by cell culture using BHK-21 cells, RT-qPCR, and sequencing.
Cx. torrentium was the only mosquito species in our study that was able to transmit SINV. The overall transmission efficiency of SINV in Cx. torrentium was 6.8%. The rates of SINV infection, dissemination, and transmission in Cx. torrentium were 11%, 75%, and 83%, respectively.
Cx. torrentium may be the key vector involved in SINV transmission in northern Sweden.
Sindbis virus (SINV) is a mosquito-borne Alphavirus known to infect birds and cause intermittent outbreaks among humans in Fenno-Scandia. In Sweden, the endemic area has mainly been in central Sweden. Recently, SINV infections have emerged to northern Sweden, but the vectorial efficiency for SINV of mosquito species in this northern region has not yet been ascertained.
Mosquito larvae were sampled from the Umeå region in northern Sweden and propagated in a laboratory to adult stage to investigate the infection, dissemination, and transmission efficiency of SINV in mosquitoes.
The mosquito species were identified by DNA barcoding of the cytochrome oxidase I gene. Culex torrentium was the most abundant (82.2%) followed by Culex pipiens (14.4%), Aedes annulipes (1.1%), Anopheles claviger (1.1%), Culiseta bergrothi (1.1%), or other unidentified species (1.1%). Mosquitoes were fed with SINV-infected blood and monitored for 29 days to determine the viral extrinsic incubation period. Infection and dissemination were determined by RT-qPCR screening of dissected body parts of individual mosquitoes. Viral transmission was determined from saliva collected from individual mosquitoes at 7, 14, and 29 days. SINV was detected by cell culture using BHK-21 cells, RT-qPCR, and sequencing.
Cx. torrentium was the only mosquito species in our study that was able to transmit SINV. The overall transmission efficiency of SINV in Cx. torrentium was 6.8%. The rates of SINV infection, dissemination, and transmission in Cx. torrentium were 11%, 75%, and 83%, respectively.
Cx. torrentium may be the key vector involved in SINV transmission in northern Sweden.
The increasing rates of HIV infection that are currently being reported in high-income countries can be partly explained by migration from countries with generalized epidemics. Yet, early diagnosis of HIV/AIDS in immigrants remains a challenge. This study investigated factors that might be limiting immigrants' access to HIV/AIDS care. Data from 268 legal immigrant students of two Swedish language schools in Northern Sweden were analyzed using logistic regression. Thirty-seven percent reported reluctance to seek medical attention if they had HIV/AIDS. Fear of deportation emerged as the most important determinant of reluctance to seek care after adjusting for socio-demographic factors, knowledge level, stigmatizing attitudes and fear of disclosure. Targeted interventions should consider the heterogeneity of migrant communities and the complex interplay of various factors which may impede access to HIV-related services. The myth about deportation because of HIV/AIDS should be countered.
The prevalent human hantavirus disease in Sweden is nephropathia epidemica, which is caused by Puumala virus and shed by infected bank voles (Clethrionomys glareolus). To evaluate temporal and spatial patterns of this disease, we studied 2,468 reported cases from a highly disease-endemic region in northern Sweden. We found that, in particular, middle-aged men living in rural dwellings near coastal areas were overrepresented. The case-patients were most often infected in late autumn, when engaged in activities near or within manmade rodent refuges. Of 862 case-patients confident about the site of virus exposure, 50% were concentrated within 5% of the study area. The incidence of nephropathia epidemica was significantly correlated with bank vole numbers within monitored rodent populations in part of the region. Understanding this relationship may help forestall future human hantavirus outbreaks.