Skip header and navigation

Refine By

5 records – page 1 of 1.

Body dissatisfaction and drive for thinness in young adult twins.

https://arctichealth.org/en/permalink/ahliterature175339
Source
Int J Eat Disord. 2005 Apr;37(3):188-99
Publication Type
Article
Date
Apr-2005
Author
Anna Keski-Rahkonen
Cynthia M Bulik
Benjamin M Neale
Richard J Rose
Aila Rissanen
Jaakko Kaprio
Author Affiliation
Department of Public Health, University of Helsinki, Helsinki, Finland. anna.keski-rahkonen@helsinki.fi
Source
Int J Eat Disord. 2005 Apr;37(3):188-99
Date
Apr-2005
Language
English
Publication Type
Article
Keywords
Adult
Body Image
Drive
Eating Disorders - genetics - psychology
Female
Finland
Humans
Logistic Models
Longitudinal Studies
Male
Multivariate Analysis
Risk factors
Sex Factors
Thinness - psychology
Abstract
We explored correlates of the Eating Disorder Inventory subscales Body Dissatisfaction (BD) and Drive for Thinness (DT) and genetic and environmental influences on these traits.
In a population-based sample of 4,667 Finnish twins aged 22-27 years, we conducted twin modeling to explore genetic and environmental contributions to body dissatisfaction and drive for thinness. Logistic regression was used for the correlational analysis.
Various eating and body size-related factors and psychosomatic symptoms were significantly associated with high body dissatisfaction and drive for thinness in both genders. In women, early puberty onset, early initiation of sexual activity, and multiple sex partners were statistically significant risk factors of body dissatisfaction. In gender-specific univariate twin models, additive genes accounted for 59.4% (95% confidence interval [CI] = 53.2-64.7%) of the variance in body dissatisfaction and for 51.0% (95% CI = 43.7-57.5%) of the variance in drive for thinness among females, but for none of the variance among males.
There are very distinct gender differences in the heritability patterns of body dissatisfaction and drive for thinness in young adults.
PubMed ID
15822080 View in PubMed
Less detail

Exome array analysis identifies new loci and low-frequency variants influencing insulin processing and secretion.

https://arctichealth.org/en/permalink/ahliterature117844
Source
Nat Genet. 2013 Feb;45(2):197-201
Publication Type
Article
Date
Feb-2013
Author
Jeroen R Huyghe
Anne U Jackson
Marie P Fogarty
Martin L Buchkovich
Alena Stancáková
Heather M Stringham
Xueling Sim
Lingyao Yang
Christian Fuchsberger
Henna Cederberg
Peter S Chines
Tanya M Teslovich
Jane M Romm
Hua Ling
Ivy McMullen
Roxann Ingersoll
Elizabeth W Pugh
Kimberly F Doheny
Benjamin M Neale
Mark J Daly
Johanna Kuusisto
Laura J Scott
Hyun Min Kang
Francis S Collins
Gonçalo R Abecasis
Richard M Watanabe
Michael Boehnke
Markku Laakso
Karen L Mohlke
Author Affiliation
Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.
Source
Nat Genet. 2013 Feb;45(2):197-201
Date
Feb-2013
Language
English
Publication Type
Article
Keywords
Amidine-Lyases - genetics
Death Domain Receptor Signaling Adaptor Proteins - genetics
Exome - genetics
Fasting - blood
Finland
Gene Frequency
Genetic Variation
Genetics, Population
Genotype
Guanine Nucleotide Exchange Factors - genetics
Humans
Insulin - genetics - secretion
Intracellular Signaling Peptides and Proteins - genetics
Male
Mixed Function Oxygenases - genetics
Molecular Sequence Annotation
Proinsulin - blood
Tumor Suppressor Proteins - genetics
Abstract
Insulin secretion has a crucial role in glucose homeostasis, and failure to secrete sufficient insulin is a hallmark of type 2 diabetes. Genome-wide association studies (GWAS) have identified loci contributing to insulin processing and secretion; however, a substantial fraction of the genetic contribution remains undefined. To examine low-frequency (minor allele frequency (MAF) 0.5-5%) and rare (MAF
Notes
Cites: Nat Genet. 2010 Jul;42(7):579-8920581827
Cites: Nat Rev Genet. 2008 Sep;9(9):699-71218679436
Cites: J Endocrinol. 2010 Nov;207(2):151-6120807725
Cites: Biochem Pharmacol. 2011 Apr 15;81(8):965-7521300027
Cites: Am J Hum Genet. 2011 Jul 15;89(1):82-9321737059
Cites: J Biol Chem. 2011 Sep 23;286(38):33213-2221808068
Cites: Diabetes. 2011 Oct;60(10):2624-3421873549
Cites: Nucleic Acids Res. 2012 Jan;40(Database issue):D71-522102590
Cites: Obesity (Silver Spring). 2008 Aug;16(8):1901-718551118
Cites: Nat Genet. 2009 Jan;41(1):56-6519060906
Cites: Nat Genet. 2009 Jan;41(1):35-4619060910
Cites: Genes Cells. 2009 Jan;14(1):41-5219077034
Cites: Endocrinology. 2009 May;150(5):2072-919106222
Cites: Diabetes. 2009 May;58(5):1212-2119223598
Cites: Cell Mol Life Sci. 2009 Aug;66(16):2651-919554261
Cites: Nat Genet. 2009 Sep;41(9):986-9019648918
Cites: Diabetes. 2009 Sep;58(9):2129-3619502414
Cites: Nat Genet. 2010 Feb;42(2):105-1620081858
Cites: Methods Mol Biol. 2010;628:341-7220238091
Cites: Nat Genet. 2010 Apr;42(4):348-5420208533
Cites: Nat Methods. 2010 Apr;7(4):248-920354512
Cites: Diabetes. 2010 May;59(5):1266-7520185807
Cites: Biometrics. 1999 Dec;55(4):997-100411315092
Cites: Diabetes Care. 2001 Apr;24(4):796-711315860
Cites: Biochem J. 2002 Mar 1;362(Pt 2):273-911853534
Cites: J Biol Chem. 2003 Mar 14;278(11):9715-2112510060
Cites: Diabetologia. 1985 Jul;28(7):412-93899825
Cites: J Cell Sci. 1996 Sep;109 ( Pt 9):2265-738886977
Cites: Diabetes Care. 1999 Sep;22(9):1462-7010480510
Cites: Dev Biol. 2005 Nov 15;287(2):301-1316225857
Cites: Physiology (Bethesda). 2006 Jun;21:189-9616714477
Cites: Genome Biol. 2006;7 Suppl 1:S4.1-916925838
Cites: Bioinformatics. 2007 May 15;23(10):1294-617384015
Cites: Genomics. 2007 Aug;90(2):249-6017509819
Cites: J Cell Biol. 2007 Jul 30;178(3):363-917646400
Cites: PLoS Genet. 2006 Dec;2(12):e19017194218
Cites: Am J Hum Genet. 2007 Sep;81(3):559-7517701901
Cites: Genetics. 2007 Sep;177(1):577-8517660554
Cites: Am J Hum Genet. 2008 Jul;83(1):132-5; author reply 135-918606306
Cites: Nat Genet. 2012 Apr;44(4):430-4, S1-222387998
Cites: Nat Genet. 2012 Jun;44(6):623-3022641211
Cites: Nat Genet. 2012 Jun;44(6):659-6922581228
Cites: Crit Rev Biochem Mol Biol. 2012 Jul-Aug;47(4):391-40622681236
Cites: Nat Genet. 2012 Sep;44(9):991-100522885924
Cites: Biostatistics. 2012 Sep;13(4):762-7522699862
PubMed ID
23263489 View in PubMed
Less detail

Genome-wide association analysis identifies 13 new risk loci for schizophrenia.

https://arctichealth.org/en/permalink/ahliterature107798
Source
Nat Genet. 2013 Oct;45(10):1150-9
Publication Type
Article
Date
Oct-2013
Author
Stephan Ripke
Colm O'Dushlaine
Kimberly Chambert
Jennifer L Moran
Anna K Kähler
Susanne Akterin
Sarah E Bergen
Ann L Collins
James J Crowley
Menachem Fromer
Yunjung Kim
Sang Hong Lee
Patrik K E Magnusson
Nick Sanchez
Eli A Stahl
Stephanie Williams
Naomi R Wray
Kai Xia
Francesco Bettella
Anders D Borglum
Brendan K Bulik-Sullivan
Paul Cormican
Nick Craddock
Christiaan de Leeuw
Naser Durmishi
Michael Gill
Vera Golimbet
Marian L Hamshere
Peter Holmans
David M Hougaard
Kenneth S Kendler
Kuang Lin
Derek W Morris
Ole Mors
Preben B Mortensen
Benjamin M Neale
Francis A O'Neill
Michael J Owen
Milica Pejovic Milovancevic
Danielle Posthuma
John Powell
Alexander L Richards
Brien P Riley
Douglas Ruderfer
Dan Rujescu
Engilbert Sigurdsson
Teimuraz Silagadze
August B Smit
Hreinn Stefansson
Stacy Steinberg
Jaana Suvisaari
Sarah Tosato
Matthijs Verhage
James T Walters
Douglas F Levinson
Pablo V Gejman
Claudine Laurent
Bryan J Mowry
Michael C O'Donovan
Ann E Pulver
Sibylle G Schwab
Dieter B Wildenauer
Frank Dudbridge
Jianxin Shi
Margot Albus
Madeline Alexander
Dominique Campion
David Cohen
Dimitris Dikeos
Jubao Duan
Peter Eichhammer
Stephanie Godard
Mark Hansen
F Bernard Lerer
Kung-Yee Liang
Wolfgang Maier
Jacques Mallet
Deborah A Nertney
Gerald Nestadt
Nadine Norton
George N Papadimitriou
Robert Ribble
Alan R Sanders
Jeremy M Silverman
Dermot Walsh
Nigel M Williams
Brandon Wormley
Maria J Arranz
Steven Bakker
Stephan Bender
Elvira Bramon
David Collier
Benedicto Crespo-Facorro
Jeremy Hall
Conrad Iyegbe
Assen Jablensky
Rene S Kahn
Luba Kalaydjieva
Stephen Lawrie
Cathryn M Lewis
Don H Linszen
Ignacio Mata
Andrew McIntosh
Robin M Murray
Roel A Ophoff
Jim Van Os
Muriel Walshe
Matthias Weisbrod
Durk Wiersma
Peter Donnelly
Ines Barroso
Jenefer M Blackwell
Matthew A Brown
Juan P Casas
Aiden P Corvin
Panos Deloukas
Audrey Duncanson
Janusz Jankowski
Hugh S Markus
Christopher G Mathew
Colin N A Palmer
Robert Plomin
Anna Rautanen
Stephen J Sawcer
Richard C Trembath
Ananth C Viswanathan
Nicholas W Wood
Chris C A Spencer
Gavin Band
Céline Bellenguez
Colin Freeman
Garrett Hellenthal
Eleni Giannoulatou
Matti Pirinen
Richard D Pearson
Amy Strange
Zhan Su
Damjan Vukcevic
Cordelia Langford
Sarah E Hunt
Sarah Edkins
Rhian Gwilliam
Hannah Blackburn
Suzannah J Bumpstead
Serge Dronov
Matthew Gillman
Emma Gray
Naomi Hammond
Alagurevathi Jayakumar
Owen T McCann
Jennifer Liddle
Simon C Potter
Radhi Ravindrarajah
Michelle Ricketts
Avazeh Tashakkori-Ghanbaria
Matthew J Waller
Paul Weston
Sara Widaa
Pamela Whittaker
Mark I McCarthy
Kari Stefansson
Edward Scolnick
Shaun Purcell
Steven A McCarroll
Pamela Sklar
Christina M Hultman
Patrick F Sullivan
Author Affiliation
1] Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. [3].
Source
Nat Genet. 2013 Oct;45(10):1150-9
Date
Oct-2013
Language
English
Publication Type
Article
Keywords
Case-Control Studies
Female
Genetic Predisposition to Disease
Genome-Wide Association Study
Humans
Male
Polymorphism, Single Nucleotide
Schizophrenia - genetics
Sweden
Abstract
Schizophrenia is an idiopathic mental disorder with a heritable component and a substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases and 6,243 controls) followed by meta-analysis with previous schizophrenia GWAS (8,832 cases and 12,067 controls) and finally by replication of SNPs in 168 genomic regions in independent samples (7,413 cases, 19,762 controls and 581 parent-offspring trios). We identified 22 loci associated at genome-wide significance; 13 of these are new, and 1 was previously implicated in bipolar disorder. Examination of candidate genes at these loci suggests the involvement of neuronal calcium signaling. We estimate that 8,300 independent, mostly common SNPs (95% credible interval of 6,300-10,200 SNPs) contribute to risk for schizophrenia and that these collectively account for at least 32% of the variance in liability. Common genetic variation has an important role in the etiology of schizophrenia, and larger studies will allow more detailed understanding of this disorder.
Notes
Cites: Schizophr Bull. 2006 Jan;32(1):195-716135560
Cites: Am J Epidemiol. 2006 Feb 1;163(3):197-20316339049
Cites: Epidemiology. 2006 May;17(3):252-416617271
Cites: Psychol Med. 2006 Oct;36(10):1417-2516863597
Cites: Biochim Biophys Acta. 2006 Nov;1763(11):1169-7417034879
Cites: Psychol Med. 2007 Aug;37(8):1109-1817493296
Cites: Am J Hum Genet. 2007 Sep;81(3):559-7517701901
Cites: Arch Gen Psychiatry. 2007 Oct;64(10):1123-3117909124
Cites: Learn Mem. 2008 Jan;15(1):1-518174367
Cites: Eur J Hum Genet. 2008 Apr;16(4):422-3418197188
Cites: Nature. 2008 Mar 27;452(7186):423-818344981
Cites: Genet Epidemiol. 2008 May;32(4):381-518348202
Cites: Nord J Psychiatry. 2008;62(5):342-518752109
Cites: Hum Mol Genet. 2008 Oct 15;17(R2):R122-818852200
Cites: Lancet. 2009 Jan 17;373(9659):234-919150704
Cites: Nat Genet. 2008 Sep;40(9):1056-818711365
Cites: Nat Rev Genet. 2009 Mar;10(3):184-9419223927
Cites: Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9362-719474294
Cites: Mol Psychiatry. 2009 Aug;14(8):774-8519349958
Cites: Nature. 2009 Aug 6;460(7256):744-719571808
Cites: Nature. 2009 Aug 6;460(7256):753-719571809
Cites: Nature. 2009 Aug 6;460(7256):748-5219571811
Cites: Schizophr Bull. 2010 Jan;36(1):14-2319996148
Cites: Br J Psychiatry. 2010 Feb;196(2):92-520118450
Cites: J Cell Biol. 2010 Apr 5;189(1):127-4120368621
Cites: Cell. 2004 Oct 1;119(1):19-3115454078
Cites: N Engl J Med. 1996 Jul 25;335(4):242-98657240
Cites: BMJ. 1999 Feb 13;318(7181):421-69974454
Cites: Cell. 2005 Jan 14;120(1):15-2015652477
Cites: PLoS Med. 2005 May;2(5):e14115916472
Cites: Int Clin Psychopharmacol. 2005 Sep;20(5):243-5116096514
Cites: J Neurosci. 2005 Oct 26;25(43):9883-9216251435
Cites: Hum Mol Genet. 2010 Sep 1;19(17):3482-820601676
Cites: Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):14950-720668236
Cites: PLoS Genet. 2010 Apr;6(4):e100088820369019
Cites: Proc Natl Acad Sci U S A. 2010 May 18;107(20):9287-9220442332
Cites: Nat Genet. 2010 Jun;42(6):508-1420453842
Cites: PLoS One. 2010;5(5):e1069320502693
Cites: Stem Cells. 2010 Jun;28(6):1060-7020506192
Cites: Nat Genet. 2010 Jul;42(7):570-520562874
Cites: Am J Psychiatry. 2010 Jul;167(7):741-420595425
Cites: Science. 2012 Sep 7;337(6099):1190-522955828
Cites: Mol Psychiatry. 2012 Oct;17(10):996-100621931320
Cites: Biol Psychiatry. 2012 Oct 15;72(8):620-822883433
Cites: Nat Genet. 2012 Oct;44(10):1084-922941192
Cites: Nat Genet. 2012 Dec;44(12):1365-923042115
Cites: Can J Cardiol. 2013 Jan;29(1):89-9923062665
Cites: Mol Psychiatry. 2013 Apr;18(4):497-51122472876
Cites: Mol Psychiatry. 2013 Jun;18(6):708-1222614287
Cites: Am J Hum Genet. 2007 Apr;80(4):588-60417357067
Cites: Nat Genet. 2011 Oct;43(10):977-8321926972
Cites: Nat Genet. 2011 Oct;43(10):969-7621926974
Cites: J Med Genet. 2011 Dec;48(12):810-822003227
Cites: Mol Psychiatry. 2012 Jan;17(1):2-321826059
Cites: Nat Methods. 2012 Feb;9(2):179-8122138821
Cites: Nature. 2012 Feb 16;482(7385):390-422307276
Cites: Nat Genet. 2012 Mar;44(3):247-5022344220
Cites: PLoS Genet. 2012;8(4):e100263922532805
Cites: Nat Genet. 2012 May;44(5):483-922446960
Cites: Bioinformatics. 2012 Jul 1;28(13):1797-922513993
Cites: Am J Hum Genet. 2012 Jul 13;91(1):38-5522726847
Cites: Nat Rev Genet. 2012 Aug;13(8):537-5122777127
Cites: Am J Hum Genet. 2012 Aug 10;91(2):303-1222863191
Cites: Eur J Hum Genet. 2012 Sep;20(9):1004-822433715
Cites: Mol Psychiatry. 2012 Sep;17(9):880-622688191
Cites: Am J Psychiatry. 2012 Sep;169(9):963-7322885689
Cites: Nature. 2012 Sep 6;489(7414):57-7422955616
Cites: Nature. 2012 Sep 6;489(7414):75-8222955617
Cites: Neuron. 2000 Jan;25(1):177-9010707982
Cites: N Engl J Med. 2001 Mar 15;344(11):808-1411248156
Cites: Biometrics. 1999 Dec;55(4):997-100411315092
Cites: Soc Psychiatry Psychiatr Epidemiol. 2002 Nov;37(11):527-3112395142
Cites: Am J Psychiatry. 2003 Dec;160(12):2216-2114638593
Cites: Arch Gen Psychiatry. 2003 Dec;60(12):1187-9214662550
Cites: Neurobiol Learn Mem. 2004 Mar;81(2):105-1414990230
Cites: Genetics. 2004 Feb;166(2):835-8115020472
Cites: Schizophr Bull. 2004;30(2):279-9315279046
Cites: Nature. 2010 Oct 14;467(7317):832-820881960
Cites: Nat Genet. 2010 Nov;42(11):937-4820935630
Cites: Am J Hum Genet. 2011 Jan 7;88(1):76-8221167468
Cites: Trends Genet. 2011 Feb;27(2):72-921122937
Cites: Nature. 2011 Feb 10;470(7333):187-9721307931
Cites: Brain Res. 2011 Mar 22;1380:42-7721129364
Cites: Am J Hum Genet. 2011 Mar 11;88(3):372-8121353194
Cites: Schizophr Bull. 2011 May;37(3):456-6321505112
Cites: Eur J Hum Genet. 2011 Jul;19(7):807-1221407268
Cites: Nat Genet. 2011 Sep;43(9):860-321743468
Cites: Genes Dev. 2011 Sep 15;25(18):1915-2721890647
Cites: Prog Biophys Mol Biol. 2006 Jan-Apr;90(1-3):38-6315979127
PubMed ID
23974872 View in PubMed
Less detail

Haplotype Sharing Provides Insights into Fine-Scale Population History and Disease in Finland.

https://arctichealth.org/en/permalink/ahliterature296612
Source
Am J Hum Genet. 2018 05 03; 102(5):760-775
Publication Type
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Date
05-03-2018
Author
Alicia R Martin
Konrad J Karczewski
Sini Kerminen
Mitja I Kurki
Antti-Pekka Sarin
Mykyta Artomov
Johan G Eriksson
Tõnu Esko
Giulio Genovese
Aki S Havulinna
Jaakko Kaprio
Alexandra Konradi
László Korányi
Anna Kostareva
Minna Männikkö
Andres Metspalu
Markus Perola
Rashmi B Prasad
Olli Raitakari
Oxana Rotar
Veikko Salomaa
Leif Groop
Aarno Palotie
Benjamin M Neale
Samuli Ripatti
Matti Pirinen
Mark J Daly
Author Affiliation
Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA. Electronic address: armartin@broadinstitute.org.
Source
Am J Hum Genet. 2018 05 03; 102(5):760-775
Date
05-03-2018
Language
English
Publication Type
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Keywords
Disease - genetics
Finland
Gene Flow
Genetic Variation
Genetics, Population
Geography
Haplotypes - genetics
Human Migration
Humans
Parturition
Population Density
Time Factors
Abstract
Finland provides unique opportunities to investigate population and medical genomics because of its adoption of unified national electronic health records, detailed historical and birth records, and serial population bottlenecks. We assembled a comprehensive view of recent population history (=100 generations), the timespan during which most rare-disease-causing alleles arose, by comparing pairwise haplotype sharing from 43,254 Finns to that of 16,060 Swedes, Estonians, Russians, and Hungarians from geographically and linguistically adjacent countries with different population histories. We find much more extensive sharing in Finns, with at least one = 5 cM tract on average between pairs of unrelated individuals. By coupling haplotype sharing with fine-scale birth records from more than 25,000 individuals, we find that although haplotype sharing broadly decays with geographical distance, there are pockets of excess haplotype sharing; individuals from northeast Finland typically share several-fold more of their genome in identity-by-descent segments than individuals from southwest regions. We estimate recent effective population-size changes through time across regions of Finland, and we find that there was more continuous gene flow as Finns migrated from southwest to northeast between the early- and late-settlement regions than was dichotomously described previously. Lastly, we show that haplotype sharing is locally enriched by an order of magnitude among pairs of individuals sharing rare alleles and especially among pairs sharing rare disease-causing variants. Our work provides a general framework for using haplotype sharing to reconstruct an integrative view of recent population history and gain insight into the evolutionary origins of rare variants contributing to disease.
PubMed ID
29706349 View in PubMed
Less detail

A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk.

https://arctichealth.org/en/permalink/ahliterature285363
Source
Diabetes. 2017 Jul;66(7):2019-2032
Publication Type
Article
Date
Jul-2017
Author
Alisa Manning
Heather M Highland
Jessica Gasser
Xueling Sim
Taru Tukiainen
Pierre Fontanillas
Niels Grarup
Manuel A Rivas
Anubha Mahajan
Adam E Locke
Pablo Cingolani
Tune H Pers
Ana Viñuela
Andrew A Brown
Ying Wu
Jason Flannick
Christian Fuchsberger
Eric R Gamazon
Kyle J Gaulton
Hae Kyung Im
Tanya M Teslovich
Thomas W Blackwell
Jette Bork-Jensen
Noël P Burtt
Yuhui Chen
Todd Green
Christopher Hartl
Hyun Min Kang
Ashish Kumar
Claes Ladenvall
Clement Ma
Loukas Moutsianas
Richard D Pearson
John R B Perry
N William Rayner
Neil R Robertson
Laura J Scott
Martijn van de Bunt
Johan G Eriksson
Antti Jula
Seppo Koskinen
Terho Lehtimäki
Aarno Palotie
Olli T Raitakari
Suzanne B R Jacobs
Jennifer Wessel
Audrey Y Chu
Robert A Scott
Mark O Goodarzi
Christine Blancher
Gemma Buck
David Buck
Peter S Chines
Stacey Gabriel
Anette P Gjesing
Christopher J Groves
Mette Hollensted
Jeroen R Huyghe
Anne U Jackson
Goo Jun
Johanne Marie Justesen
Massimo Mangino
Jacquelyn Murphy
Matt Neville
Robert Onofrio
Kerrin S Small
Heather M Stringham
Joseph Trakalo
Eric Banks
Jason Carey
Mauricio O Carneiro
Mark DePristo
Yossi Farjoun
Timothy Fennell
Jacqueline I Goldstein
George Grant
Martin Hrabé de Angelis
Jared Maguire
Benjamin M Neale
Ryan Poplin
Shaun Purcell
Thomas Schwarzmayr
Khalid Shakir
Joshua D Smith
Tim M Strom
Thomas Wieland
Jaana Lindstrom
Ivan Brandslund
Cramer Christensen
Gabriela L Surdulescu
Timo A Lakka
Alex S F Doney
Peter Nilsson
Nicholas J Wareham
Claudia Langenberg
Tibor V Varga
Paul W Franks
Olov Rolandsson
Anders H Rosengren
Vidya S Farook
Farook Thameem
Sobha Puppala
Satish Kumar
Donna M Lehman
Christopher P Jenkinson
Joanne E Curran
Daniel Esten Hale
Sharon P Fowler
Rector Arya
Ralph A DeFronzo
Hanna E Abboud
Ann-Christine Syvänen
Pamela J Hicks
Nicholette D Palmer
Maggie C Y Ng
Donald W Bowden
Barry I Freedman
Tõnu Esko
Reedik Mägi
Lili Milani
Evelin Mihailov
Andres Metspalu
Narisu Narisu
Leena Kinnunen
Lori L Bonnycastle
Amy Swift
Dorota Pasko
Andrew R Wood
João Fadista
Toni I Pollin
Nir Barzilai
Gil Atzmon
Benjamin Glaser
Barbara Thorand
Konstantin Strauch
Annette Peters
Michael Roden
Martina Müller-Nurasyid
Liming Liang
Jennifer Kriebel
Thomas Illig
Harald Grallert
Christian Gieger
Christa Meisinger
Lars Lannfelt
Solomon K Musani
Michael Griswold
Herman A Taylor
Gregory Wilson
Adolfo Correa
Heikki Oksa
William R Scott
Uzma Afzal
Sian-Tsung Tan
Marie Loh
John C Chambers
Jobanpreet Sehmi
Jaspal Singh Kooner
Benjamin Lehne
Yoon Shin Cho
Jong-Young Lee
Bok-Ghee Han
Annemari Käräjämäki
Qibin Qi
Lu Qi
Jinyan Huang
Frank B Hu
Olle Melander
Marju Orho-Melander
Jennifer E Below
David Aguilar
Tien Yin Wong
Jianjun Liu
Chiea-Chuen Khor
Kee Seng Chia
Wei Yen Lim
Ching-Yu Cheng
Edmund Chan
E Shyong Tai
Tin Aung
Allan Linneberg
Bo Isomaa
Thomas Meitinger
Tiinamaija Tuomi
Liisa Hakaste
Jasmina Kravic
Marit E Jørgensen
Torsten Lauritzen
Panos Deloukas
Kathleen E Stirrups
Katharine R Owen
Andrew J Farmer
Timothy M Frayling
Stephen P O'Rahilly
Mark Walker
Jonathan C Levy
Dylan Hodgkiss
Andrew T Hattersley
Teemu Kuulasmaa
Alena Stancáková
Inês Barroso
Dwaipayan Bharadwaj
Juliana Chan
Giriraj R Chandak
Mark J Daly
Peter J Donnelly
Shah B Ebrahim
Paul Elliott
Tasha Fingerlin
Philippe Froguel
Cheng Hu
Weiping Jia
Ronald C W Ma
Gilean McVean
Taesung Park
Dorairaj Prabhakaran
Manjinder Sandhu
James Scott
Rob Sladek
Nikhil Tandon
Yik Ying Teo
Eleftheria Zeggini
Richard M Watanabe
Heikki A Koistinen
Y Antero Kesaniemi
Matti Uusitupa
Timothy D Spector
Veikko Salomaa
Rainer Rauramaa
Colin N A Palmer
Inga Prokopenko
Andrew D Morris
Richard N Bergman
Francis S Collins
Lars Lind
Erik Ingelsson
Jaakko Tuomilehto
Fredrik Karpe
Leif Groop
Torben Jørgensen
Torben Hansen
Oluf Pedersen
Johanna Kuusisto
Gonçalo Abecasis
Graeme I Bell
John Blangero
Nancy J Cox
Ravindranath Duggirala
Mark Seielstad
James G Wilson
Josee Dupuis
Samuli Ripatti
Craig L Hanis
Jose C Florez
Karen L Mohlke
James B Meigs
Markku Laakso
Andrew P Morris
Michael Boehnke
David Altshuler
Mark I McCarthy
Anna L Gloyn
Cecilia M Lindgren
Source
Diabetes. 2017 Jul;66(7):2019-2032
Date
Jul-2017
Language
English
Publication Type
Article
Keywords
African Americans - genetics
Alleles
Asian Continental Ancestry Group - genetics
Case-Control Studies
Diabetes Mellitus, Type 2 - genetics - metabolism
European Continental Ancestry Group - genetics
Fasting - metabolism
Finland
Gene Frequency
Genetic Predisposition to Disease
Genotype
Hispanic Americans - genetics
Humans
Insulin - metabolism
Insulin Resistance - genetics
Odds Ratio
Proto-Oncogene Proteins c-akt - genetics
Abstract
To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting plasma insulin (FI), a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in FI levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-h insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio 1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.
Notes
Cites: J Clin Invest. 2009 Feb;119(2):315-2219164855
Cites: Nature. 2014 Feb 6;506(7486):97-10124390345
Cites: Int J Epidemiol. 2008 Dec;37(6):1220-618263651
Cites: Am J Hum Genet. 2017 Mar 2;100(3):428-44328257690
Cites: Nucleic Acids Res. 2014 Jan;42(Database issue):D764-7024270787
Cites: Diabetes. 2007 Mar;56(3):714-917327441
Cites: PLoS Genet. 2014 Jul 31;10(7):e100449425078778
Cites: Cell Metab. 2006 Jul;4(1):89-9616814735
Cites: Diabetes Care. 1999 Sep;22(9):1462-7010480510
Cites: J Cell Sci. 2001 Aug;114(Pt 16):2903-1011686294
Cites: Adv Biol Regul. 2014 May;55:28-3824794538
Cites: Nat Genet. 2015 Jan;47(1):88-9125436857
Cites: Elife. 2014 Apr 25;3:e0138124771767
Cites: Development. 2005 Jul;132(13):2943-5415930105
Cites: Science. 2001 Jun 1;292(5522):1728-3111387480
Cites: Am J Hum Genet. 2014 Feb 6;94(2):223-3224507774
Cites: Science. 2004 May 28;304(5675):1325-815166380
Cites: J Intern Med. 2007 May;261(5):418-2517444881
Cites: PLoS Genet. 2015 Jan 27;11(1):e100487625625282
Cites: Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19368-7323134728
Cites: Nat Genet. 2007 Jul;39(7):906-1317572673
Cites: Diabetes. 2008 Apr;57(4):1120-418174525
Cites: Clin Cancer Res. 2001 Aug;7(8):2475-911489829
Cites: J Mol Med (Berl). 2009 Aug;87(8):825-3519554302
Cites: Bioinformatics. 2010 Sep 1;26(17):2190-120616382
Cites: Am J Hum Genet. 2013 Jul 11;93(1):42-5323768515
Cites: Genome Res. 2004 Jun;14(6):1188-9015173120
Cites: Diabetes. 2009 May;58(5):1212-2119223598
Cites: Genes Dev. 2003 Jun 1;17(11):1352-6512782654
Cites: J Biol Chem. 2001 Oct 19;276(42):38349-5211533044
Cites: Science. 2011 Oct 28;334(6055):47421979934
Cites: Stat Med. 2005 Oct 15;24(19):2911-3516152135
Cites: J Clin Endocrinol Metab. 2014 Feb;99(2):391-424285683
Cites: Cell Signal. 2008 Dec;20(12):2237-4618771725
Cites: Proteins. 2002 Aug 1;48(2):227-4112112692
Cites: Diabet Med. 1994 Apr;11(3):286-928033528
Cites: PLoS One. 2013 Jul 12;8(7):e6809523874508
Cites: Nat Genet. 2012 May 13;44(6):659-6922581228
Cites: Nature. 2006 Dec 14;444(7121):840-617167471
Cites: Nature. 2014 Aug 14;512(7513):190-325043022
Cites: Nature. 2016 Aug 4;536(7614):41-727398621
Cites: Am J Hum Genet. 2011 Jul 15;89(1):82-9321737059
Cites: Diabetes. 2003 Apr;52(4):910-712663460
Cites: JAMA. 2014 Jun 11;311(22):2305-1424915262
Cites: Nat Genet. 2014 Feb;46(2):200-424336170
Cites: Int J Epidemiol. 2010 Apr;39(2):504-1819959603
Cites: Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9350-519470471
Cites: J Clin Invest. 2003 Jul;112(2):197-20812843127
Cites: Nature. 2009 Nov 19;462(7271):307-1419924209
Cites: Science. 2015 May 8;348(6235):648-6025954001
Cites: Nucleic Acids Res. 2011 Jul;39(Web Server issue):W171-621459847
Cites: Nat Genet. 2010 Apr;42(4):348-5420208533
PubMed ID
28341696 View in PubMed
Less detail