Skip header and navigation

2 records – page 1 of 1.

Discovery of a sexual stage in Trichophyton onychocola, a presumed geophilic dermatophyte isolated from toenails of patients with a history of T. rubrum onychomycosis.
Med Mycol. 2015 Nov;53(8):798-809
Publication Type
Vit Hubka
Christoffer V Nissen
Rasmus Hare Jensen
Maiken C Arendrup
Adela Cmokova
Alena Kubatova
Magdalena Skorepova
Miroslav Kolarik
Med Mycol. 2015 Nov;53(8):798-809
Publication Type
Cell Division
Crossing Over, Genetic
Culture Media - chemistry
DNA, Fungal - chemistry - genetics
Genes, Mating Type, Fungal
Middle Aged
Molecular Sequence Data
Nails - microbiology - pathology
Onychomycosis - diagnosis - microbiology
Sequence Analysis, DNA
Trichophyton - genetics - isolation & purification - physiology
Trichophyton onychocola is a recently described geophilic dermatophyte that has been isolated from a toenail of Czech patient with a history of onychomycosis due to T. rubrum and clinical suspicion of relapse. In this study, we report a similar case from Denmark in an otherwise healthy 56-year-old man. The patient had a history of great toenail infection caused by T. rubrum in 2004 and presented with suspected relapse in 2011 and 2013. Trichophyton onychocola was the only microbial agent isolated at the second visit in 2013 and the identification was confirmed by DNA sequencing. Direct microscopic nail examination was positive for hyphae, however the etiological significance of T. onychocola was not supported by repeated isolation of the fungus. This new species may be an overlooked geophilic species due to the resemblance to some common species, for example, zoophilic T. interdigitale or some species of geophilic dermatophytes. We included differential diagnosis with phenotypically similar species; however, it is recommended that molecular methods are used for correct identification. The MAT locus of Danish strain was of opposite mating type than in the previously isolated Czech strain and the two isolates were successfully mated. The mating experiments with related heterothallic species T. thuringiense and Arthroderma melis were negative. The sexual state showed all typical signs of arthroderma-morph and is described by using optical as well as scanning electron microscopy. The sexual state was induced on a set of agar media, however low cultivation temperature and the presence of keratin source were crucial for the success rather than formulation of medium.
PubMed ID
26129891 View in PubMed
Less detail

White-nose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America.
Sci Rep. 2016 Jan 29;6:19829
Publication Type
Jan Zukal
Hana Bandouchova
Jiri Brichta
Adela Cmokova
Kamil S Jaron
Miroslav Kolarik
Veronika Kovacova
Alena Kubátová
Alena Nováková
Oleg Orlov
Jiri Pikula
Primož Presetnik
Jurgis Šuba
Alexandra Zahradníková
Natália Martínková
Sci Rep. 2016 Jan 29;6:19829
Publication Type
Arctic Regions
Ascomycota - pathogenicity
Chiroptera - microbiology
Host-Pathogen Interactions
Mycoses - epidemiology - microbiology - pathology
North America
Nose - microbiology - pathology
Skin - microbiology - pathology
A striking feature of white-nose syndrome, a fungal infection of hibernating bats, is the difference in infection outcome between North America and Europe. Here we show high WNS prevalence both in Europe and on the West Siberian Plain in Asia. Palearctic bat communities tolerate similar fungal loads of Pseudogymnoascus destructans infection as their Nearctic counterparts and histopathology indicates equal focal skin tissue invasiveness pathognomonic for WNS lesions. Fungal load positively correlates with disease intensity and it reaches highest values at intermediate latitudes. Prevalence and fungal load dynamics in Palearctic bats remained persistent and high between 2012 and 2014. Dominant haplotypes of five genes are widespread in North America, Europe and Asia, expanding the source region of white-nose syndrome to non-European hibernacula. Our data provides evidence for both endemicity and tolerance to this persistent virulent fungus in the Palearctic, suggesting that host-pathogen interaction equilibrium has been established.
Cites: Geospat Health. 2014 Nov;9(1):221-925545939
Cites: Transbound Emerg Dis. 2015 Feb;62(1):1-525268034
Cites: J Wildl Dis. 2015 Jan;51(1):36-4725375940
Cites: Cell. 2015 Jan 15;160(1-2):20-3525533784
Cites: Mem Inst Oswaldo Cruz. 2015 Feb;110(1):1-2225742261
Cites: Curr Biol. 2015 Mar 16;25(6):R217-925784035
Cites: J Wildl Dis. 2015 Apr;51(2):519-2225647588
Cites: Emerg Infect Dis. 2015 Jun;21(6):1023-625989230
Cites: Nat Methods. 2012 Jul;9(7):676-8222743772
Cites: Ecol Lett. 2012 Sep;15(9):1050-722747672
Cites: PLoS Pathog. 2012;8(7):e100277922829763
Cites: Nat Commun. 2012;3:130623250436
Cites: Appl Environ Microbiol. 2013 Feb;79(4):1293-30123241985
Cites: Mycologia. 2013 Mar-Apr;105(2):237-5223074174
Cites: Virulence. 2012 Nov 15;3(7):583-823154286
Cites: Fungal Biol. 2013 Sep;117(9):638-4924012303
Cites: BMC Microbiol. 2014;14:2324495513
Cites: Appl Environ Microbiol. 2014 Mar;80(5):1726-3124375140
Cites: Viruses. 2014 Apr;6(4):1759-8824747773
Cites: Emerg Infect Dis. 2014 May;20(5):741-524750692
Cites: PLoS One. 2014;9(5):e9722424820101
Cites: J Wildl Dis. 2014 Jul;50(3):566-7324854396
Cites: Bioinformatics. 2008 Jan 1;24(1):129-3118006550
Cites: Philos Trans R Soc Lond B Biol Sci. 2009 Jan 12;364(1513):37-4918926971
Cites: Science. 2009 Jan 9;323(5911):22718974316
Cites: J Vet Diagn Invest. 2009 Jul;21(4):411-419564488
Cites: Emerg Infect Dis. 2010 Aug;16(8):1237-4320678317
Cites: Science. 2010 Aug 6;329(5992):679-8220689016
Cites: PLoS One. 2010;5(8):e1197820694141
Cites: J Leukoc Biol. 2010 Oct;88(4):619-2420519639
Cites: G3 (Bethesda). 2014 Sep;4(9):1755-6325053709
Cites: Proc Biol Sci. 2015 Jan 22;282(1799):2014233525473016
Cites: Conserv Biol. 2015 Aug;29(4):1176-8525808080
Cites: PLoS One. 2015;10(7):e013339026197236
Cites: Ecohealth. 2015 Jun;12(2):330-325260801
Cites: Emerg Infect Dis. 2016 Jan;22(1):140-226673906
Cites: Science. 2000 Jan 21;287(5452):443-910642539
Cites: Emerg Infect Dis. 2001 May-Jun;7(3):439-4111384522
Cites: Philos Trans R Soc Lond B Biol Sci. 2001 Jul 29;356(1411):1001-1211516378
Cites: Mol Biol Evol. 2002 Jan;19(1):101-911752195
Cites: Bioinformatics. 2004 Jan 22;20(2):289-9014734327
Cites: Mol Biol Evol. 1999 Jan;16(1):37-4810331250
Cites: PLoS Biol. 2004 Nov;2(11):e35115502873
Cites: Clin Microbiol Rev. 2006 Jul;19(3):531-4516847084
Cites: Syst Biol. 2007 Apr;56(2):252-7017464881
Cites: J Comp Pathol. 2007 May;136(4):266-7217498518
Cites: MBio. 2010;1(5). pii: e00212-10. doi: 10.1128/mBio.00212-1021060737
Cites: PLoS One. 2010;5(11):e1385321079781
Cites: Nature. 2010 Dec 2;468(7324):647-5221124449
Cites: PLoS One. 2011;6(4):e1916721556356
Cites: Emerg Infect Dis. 2011 Jul;17(7):1273-621762585
Cites: Integr Comp Biol. 2011 Oct;51(4):563-7621690107
Cites: Trends Ecol Evol. 2011 Nov;26(11):570-621835492
Cites: Nature. 2011 Dec 15;480(7377):376-822031324
Cites: Science. 2012 Feb 24;335(6071):936-4122363001
Cites: Transbound Emerg Dis. 2012 Jun;59(3):269-7822044513
Cites: Nature. 2012 Apr 12;484(7393):186-9422498624
Cites: Emerg Infect Dis. 2012 May;18(5):883-522516471
Cites: Proc Natl Acad Sci U S A. 2012 May 1;109(18):6999-700322493237
PubMed ID
26821755 View in PubMed
Less detail