Skip header and navigation

Refine By

3 records – page 1 of 1.

15q11.2 CNV affects cognitive, structural and functional correlates of dyslexia and dyscalculia.

https://arctichealth.org/en/permalink/ahliterature287813
Source
Transl Psychiatry. 2017 Apr 25;7(4):e1109
Publication Type
Article
Date
Apr-25-2017
Author
M O Ulfarsson
G B Walters
O. Gustafsson
S. Steinberg
A. Silva
O M Doyle
M. Brammer
D F Gudbjartsson
S. Arnarsdottir
G A Jonsdottir
R S Gisladottir
G. Bjornsdottir
H. Helgason
L M Ellingsen
J G Halldorsson
E. Saemundsen
B. Stefansdottir
L. Jonsson
V K Eiriksdottir
G R Eiriksdottir
G H Johannesdottir
U. Unnsteinsdottir
B. Jonsdottir
B B Magnusdottir
P. Sulem
U. Thorsteinsdottir
E. Sigurdsson
D. Brandeis
A. Meyer-Lindenberg
H. Stefansson
K. Stefansson
Source
Transl Psychiatry. 2017 Apr 25;7(4):e1109
Date
Apr-25-2017
Language
English
Publication Type
Article
Keywords
Adolescent
Adult
Aged
Chromosome Aberrations
Chromosome Deletion
Chromosomes, Human, Pair 15 - genetics
Cognition - physiology
DNA Copy Number Variations - genetics
Developmental Disabilities - genetics
Dyscalculia - genetics
Dyslexia - genetics
Female
Functional Neuroimaging - methods - standards
Heterozygote
Humans
Iceland - epidemiology
Intellectual Disability - genetics
Magnetic Resonance Imaging - methods
Male
Middle Aged
Neuropsychological Tests - standards
Phenotype
Temporal Lobe - anatomy & histology - diagnostic imaging
Young Adult
Abstract
Several copy number variants have been associated with neuropsychiatric disorders and these variants have been shown to also influence cognitive abilities in carriers unaffected by psychiatric disorders. Previously, we associated the 15q11.2(BP1-BP2) deletion with specific learning disabilities and a larger corpus callosum. Here we investigate, in a much larger sample, the effect of the 15q11.2(BP1-BP2) deletion on cognitive, structural and functional correlates of dyslexia and dyscalculia. We report that the deletion confers greatest risk of the combined phenotype of dyslexia and dyscalculia. We also show that the deletion associates with a smaller left fusiform gyrus. Moreover, tailored functional magnetic resonance imaging experiments using phonological lexical decision and multiplication verification tasks demonstrate altered activation in the left fusiform and the left angular gyri in carriers. Thus, by using convergent evidence from neuropsychological testing, and structural and functional neuroimaging, we show that the 15q11.2(BP1-BP2) deletion affects cognitive, structural and functional correlates of both dyslexia and dyscalculia.
Notes
Cites: Psychol Bull. 2005 Jul;131(4):592-61716060804
Cites: Neuroimage. 2009 Feb 1;44(3):1103-1219027075
Cites: Trends Neurosci. 2001 Sep;24(9):508-1111506881
Cites: J Learn Disabil. 2013 Nov-Dec;46(6):549-6923572008
Cites: Neuroimage. 2011 Aug 1;57(3):742-920884362
Cites: Cogn Neuropsychol. 2003 May 1;20(3):487-50620957581
Cites: Genet Med. 2013 Jun;15(6):478-8123258348
Cites: Neuroimage. 2009 Oct 1;47(4):1940-919446640
Cites: Brain. 2000 Feb;123 ( Pt 2):291-30710648437
Cites: PLoS One. 2012;7(8):e4312222916214
Cites: Nature. 2015 Apr 9;520(7546):224-925607358
Cites: Proc Biol Sci. 2015 May 7;282(1806):2014313925854887
Cites: Neurology. 2001 Mar 27;56(6):781-311274316
Cites: Mol Psychiatry. 2015 Feb;20(1):140-725421402
Cites: J Neurosci. 2014 Aug 20;34(34):11199-21125143601
Cites: Neuroimage. 1995 Dec;2(4):244-529343609
Cites: Front Hum Neurosci. 2009 Nov 24;3:5120046827
Cites: J Clin Psychiatry. 1998;59 Suppl 20:22-33;quiz 34-579881538
Cites: Science. 2011 May 27;332(6033):1049-5321617068
Cites: Hum Brain Mapp. 2009 Sep;30(9):2936-5219172644
Cites: Nat Genet. 2012 Apr 15;44(5):552-6122504417
Cites: Neuroimage. 2007 Oct 15;38(1):95-11317761438
Cites: Neuroscientist. 2013 Feb;19(1):43-6122547530
Cites: PLoS One. 2012;7(8):e4242222900020
Cites: Genes Brain Behav. 2015 Apr;14(4):369-7625778778
Cites: Nat Neurosci. 2016 Mar;19(3):420-3126854805
Cites: Hum Brain Mapp. 2009 Oct;30(10):3299-30819288465
Cites: Transl Psychiatry. 2014 Mar 25;4:e37424667445
Cites: Stat Methods Med Res. 2003 Oct;12(5):419-4614599004
Cites: J Learn Disabil. 2014 Nov-Dec;47(6):532-4223456983
Cites: Vision Res. 2001;41(10-11):1409-2211322983
Cites: J Neurosci. 1997 Jun 1;17(11):4302-119151747
Cites: Hum Brain Mapp. 2013 Nov;34(11):3055-6522711189
Cites: Neuroimage. 2002 Jan;15(1):273-8911771995
Cites: Brain Res Bull. 2005 Nov 15;67(5):403-1216216687
Cites: Cell Stem Cell. 2014 Jul 3;15(1):79-9124996170
Cites: Neuropsychologia. 2016 Mar;83:48-6226119921
Cites: Ann N Y Acad Sci. 2008 Dec;1145:237-5919076401
Cites: Hum Brain Mapp. 2008 May;29(5):613-2517636558
Cites: Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7939-4420395549
Cites: Cortex. 2010 Nov-Dec;46(10):1284-9820650450
Cites: J Exp Child Psychol. 2009 Jul;103(3):309-2419398112
Cites: Neuroimage. 2000 Jun;11(6 Pt 1):805-2110860804
Cites: Nature. 2014 Jan 16;505(7483):361-624352232
Cites: Nat Rev Neurosci. 2015 Apr;16(4):234-4425783611
PubMed ID
28440815 View in PubMed
Less detail

Cardiovascular risk factors after Kawasaki disease: a case-control study.

https://arctichealth.org/en/permalink/ahliterature195436
Source
J Pediatr. 2001 Mar;138(3):400-5
Publication Type
Article
Date
Mar-2001
Author
A A Silva
Y. Maeno
A. Hashmi
J F Smallhorn
E D Silverman
B W McCrindle
Author Affiliation
Division of Cardiology, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada.
Source
J Pediatr. 2001 Mar;138(3):400-5
Date
Mar-2001
Language
English
Publication Type
Article
Keywords
Adolescent
Brachial Artery
Cardiovascular Diseases - epidemiology - etiology
Case-Control Studies
Endothelium, Vascular
Female
Follow-Up Studies
Humans
Linear Models
Male
Mucocutaneous Lymph Node Syndrome - complications
Ontario - epidemiology
Risk factors
Statistics, nonparametric
Vasodilation
Abstract
To determine cardiovascular risk profiles of patients with Kawasaki disease and to relate them to a noninvasive measure of endothelial function.
Case-control study. Cardiovascular risk assessment including brachial artery reactivity was performed in 24 patients 11.3 +/- 1.8 (mean +/- SD) years after Kawasaki disease and in 11 subjects in a normal control group.
The case versus control groups were similar regarding age, sex, race, body mass index, and percentage of ideal body weight, although cases had a higher mean z score of body mass index than normal (+1.00 +/- 1.18; P
PubMed ID
11241050 View in PubMed
Less detail

High-throughput sequencing of a South American Amerindian.

https://arctichealth.org/en/permalink/ahliterature105427
Source
PLoS One. 2013;8(12):e83340
Publication Type
Article
Date
2013
Author
André M Ribeiro-dos-Santos
Jorge Estefano Santana de Souza
Renan Almeida
Dayse O Alencar
Maria Silvanira Barbosa
Leonor Gusmão
Wilson A Silva
Sandro J de Souza
Artur Silva
Ândrea Ribeiro-dos-Santos
Sylvain Darnet
Sidney Santos
Author Affiliation
Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.
Source
PLoS One. 2013;8(12):e83340
Date
2013
Language
English
Publication Type
Article
Keywords
Cluster analysis
DNA, Mitochondrial
Genetic Linkage
Genetics, Population
Genome, Human
High-Throughput Nucleotide Sequencing
Humans
INDEL Mutation
Indians, South American - genetics
Molecular Sequence Annotation
Polymorphism, Single Nucleotide
Population Groups - genetics
Abstract
The emergence of next-generation sequencing technologies allowed access to the vast amounts of information that are contained in the human genome. This information has contributed to the understanding of individual and population-based variability and improved the understanding of the evolutionary history of different human groups. However, the genome of a representative of the Amerindian populations had not been previously sequenced. Thus, the genome of an individual from a South American tribe was completely sequenced to further the understanding of the genetic variability of Amerindians. A total of 36.8 giga base pairs (Gbp) were sequenced and aligned with the human genome. These Gbp corresponded to 95.92% of the human genome with an estimated miscall rate of 0.0035 per sequenced bp. The data obtained from the alignment were used for SNP (single-nucleotide) and INDEL (insertion-deletion) calling, which resulted in the identification of 502,017 polymorphisms, of which 32,275 were potentially new high-confidence SNPs and 33,795 new INDELs, specific of South Native American populations. The authenticity of the sample as a member of the South Native American populations was confirmed through the analysis of the uniparental (maternal and paternal) lineages. The autosomal comparison distinguished the investigated sample from others continental populations and revealed a close relation to the Eastern Asian populations and Aboriginal Australian. Although, the findings did not discard the classical model of America settlement; it brought new insides to the understanding of the human population history. The present study indicates a remarkable genetic variability in human populations that must still be identified and contributes to the understanding of the genetic variability of South Native American populations and of the human populations history.
Notes
Cites: Science. 2008 May 9;320(5877):72918467561
Cites: Am J Hum Genet. 2003 Sep;73(3):524-3912900798
Cites: Nature. 2008 Nov 6;456(7218):53-918987734
Cites: Nature. 2008 Nov 6;456(7218):60-518987735
Cites: Hum Mutat. 2009 Feb;30(2):E386-9418853457
Cites: Bioinformatics. 2009 Aug 15;25(16):2078-919505943
Cites: Ann Hum Genet. 2009 Sep;73(Pt 5):540-919691551
Cites: Nature. 2009 Aug 20;460(7258):1011-519587683
Cites: Genome Res. 2009 Sep;19(9):1622-919470904
Cites: Genome Res. 2009 Sep;19(9):1527-4119546169
Cites: Nature. 2009 Sep 24;461(7263):489-9419779445
Cites: Am J Phys Anthropol. 2009 Nov;140(3):578-8219591214
Cites: Nature. 2010 Feb 18;463(7283):943-720164927
Cites: Curr Biol. 2010 Feb 23;20(4):R202-720178768
Cites: Forensic Sci Int Genet. 2010 Apr;4(3):187-9320215030
Cites: Bioessays. 2010 May;32(5):388-9120414896
Cites: Science. 2010 May 7;328(5979):710-2220448178
Cites: Science. 2010 May 7;328(5979):723-520448179
Cites: Genome Biol. 2010;11(9):R9120822512
Cites: Am J Hum Genet. 2002 Jul;71(1):187-9212022039
Cites: Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6465-923576724
Cites: Nature. 2003 Dec 18;426(6968):789-9614685227
Cites: Mol Biol Evol. 2004 Jan;21(1):164-7514595095
Cites: Hum Biol. 2004 Jun;76(3):413-2915481676
Cites: Nature. 1981 Apr 9;290(5806):457-657219534
Cites: Am J Hum Genet. 1996 Oct;59(4):935-458808611
Cites: Ann Hum Genet. 1996 Jul;60(Pt 4):305-198865991
Cites: Am J Phys Anthropol. 1996 Sep;101(1):29-378876812
Cites: Am J Phys Anthropol. 1999 Jun;109(2):175-8010378456
Cites: Nat Genet. 1999 Oct;23(2):14710508508
Cites: Am J Phys Anthropol. 1999 Nov;110(3):271-8410516561
Cites: Ann Hum Genet. 2005 Jan;69(Pt 1):67-8915638829
Cites: Nature. 2005 Sep 15;437(7057):376-8016056220
Cites: Hum Mol Genet. 2006 Jul 1;15(13):2076-8616714301
Cites: Genome Res. 2008 May;18(5):830-818385274
Cites: Nat Genet. 2010 Nov;42(11):931-620972442
Cites: Nature. 2010 Oct 28;467(7319):1061-7320981092
Cites: Hum Biol. 2010 Aug;82(4):433-5621082911
Cites: Bioinformatics. 2011 Nov 1;27(21):3070-121926124
Cites: Annu Rev Med. 2012;63:35-6122248320
Cites: Hum Mutat. 2012 Jul;33(7):1133-4022461382
Cites: Nature. 2012 Aug 16;488(7411):370-422801491
Cites: Hum Hered. 2001;51(1-2):97-10611096276
Cites: Nucleic Acids Res. 2001 Jan 1;29(1):308-1111125122
Cites: Am J Phys Anthropol. 2011 Oct;146(2):188-9621826635
Cites: Science. 2011 Oct 7;334(6052):94-821940856
Cites: PLoS Genet. 2012;8(11):e100296723166502
Cites: BMC Genomics. 2012;13:44022938532
Cites: PLoS Genet. 2013 Apr;9(4):e100346023593040
Cites: PLoS One. 2008;3(9):e315718797501
PubMed ID
24386182 View in PubMed
Less detail