Skip header and navigation

Refine By

9 records – page 1 of 1.

Body fat and mobility are explained by common genetic and environmental influences in older women.

https://arctichealth.org/en/permalink/ahliterature157662
Source
Obesity (Silver Spring). 2008 Jul;16(7):1616-21
Publication Type
Article
Date
Jul-2008
Author
Alfredo Ortega-Alonso
Sarianna Sipilä
Urho M Kujala
Jaakko Kaprio
Taina Rantanen
Author Affiliation
Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland. alfredo.ortega@sport.jyu.fi
Source
Obesity (Silver Spring). 2008 Jul;16(7):1616-21
Date
Jul-2008
Language
English
Publication Type
Article
Keywords
Activities of Daily Living
Adiposity - genetics
Age Factors
Aged
Aging - genetics
Electric Impedance
Environment
Female
Finland
Genetic Predisposition to Disease
Humans
Locomotion - genetics
Middle Aged
Mobility Limitation
Models, Genetic
Obesity - genetics - physiopathology
Physical Endurance - genetics
Risk factors
Twins, Dizygotic - genetics
Twins, Monozygotic - genetics
Walking
Abstract
In older adults, mobility limitations often coexist with overweight or obesity, suggesting that similar factors may underlie both traits. This study examined the extent to which genetic and environmental influences explain the association between adiposity and mobility in older women. Body fat percentage (bioimpedance test), walking speed over 10 m, and distance walked in a 6-min test were evaluated in 92 monozygotic (MZ) and 104 dizygotic (DZ) pairs of twin sisters reared together, aged 63-76 years. Genetic and environmental influences on each trait were estimated using age-adjusted multivariate genetic modeling. The analyses showed that the means (and s.d.) for body fat percentage, walking speed, and walking endurance were 33.2+/-7.3%, 1.7+/-0.3 m/s and 529.7+/-75.4 m, respectively. The phenotypic correlation between adiposity and walking speed was -0.32 and between adiposity and endurance it was -0.33. Genetic influences explained 80% of the association between adiposity and speed, and 65% of adiposity and walking endurance. Cross-trait genetic influences accounted for 12% of the variability in adiposity, 56% in walking speed, and 34% in endurance. Trait-specific genetic influences were also detected for adiposity (54%) and walking endurance (13%), but not speed. In conclusion, among community-living older women, an inverse association was found between adiposity and mobility that was mostly due to the effect of shared genes. This result suggests that the identification of genetic variants for body fat metabolism may also provide understanding of the development of mobility limitations in older women.
PubMed ID
18421266 View in PubMed
Less detail

Genetic and environmental influences on hearing at different frequencies separately for the better and worse hearing ear in older women.

https://arctichealth.org/en/permalink/ahliterature160056
Source
Int J Audiol. 2007 Dec;46(12):772-9
Publication Type
Article
Date
Dec-2007
Author
Anne Viljanen
Jaakko Kaprio
Ilmari Pyykkö
Martti Sorri
Markku Kauppinen
Markku Koskenvuo
Taina Rantanen
Author Affiliation
Finnish Centre for Interdisciplinary Gerontology, Department of Health Sciences, University of Jyväskylä, Finland. anne.viljanen@sport.jyu.fi
Source
Int J Audiol. 2007 Dec;46(12):772-9
Date
Dec-2007
Language
English
Publication Type
Article
Keywords
Aged
Aging - physiology
Auditory Threshold - physiology
Diseases in Twins - epidemiology
Environmental Exposure - adverse effects
Female
Finland - epidemiology
Hearing Disorders - epidemiology - etiology - genetics
Humans
Middle Aged
Registries
Severity of Illness Index
Twins, Dizygotic
Abstract
The purpose of the present study was to examine the relative contribution of genetic and environmental effects on the air-conducted hearing threshold levels at low (0.125-0.5 kHz), mid (1-2 kHz), and high (4-8 kHz) frequencies separately for the better and worse hearing ear in older women. We also examined the distribution of audiogram configurations. Data was analysed using quantitative genetic modelling. As part of the Finnish twin study on aging (FITSA), hearing was measured in 103 monozygotic and 114 dizygotic female twin pairs aged 63-76 years. Approximately every third subject had a flat type, and two-thirds a descending type of audiogram configuration. No significant difference was observed in the distribution of audiogram configurations between zygosity groups. In the better ear, additive genetic effects accounted for 64%-74% of the total variance at different frequencies. For the worse ear, environmental effects were larger. Although overall heritability is rather constant across the frequency spectrum, it is noteworthy that at low and high frequencies frequency-specific genetic and environmental effects together accounted for the majority of the total variance.
PubMed ID
18049966 View in PubMed
Less detail

Genetic influences on resting electrocardiographic variables in older women: a twin study.

https://arctichealth.org/en/permalink/ahliterature153101
Source
Ann Noninvasive Electrocardiol. 2009 Jan;14(1):57-64
Publication Type
Article
Date
Jan-2009
Author
Sara Mutikainen
Alfredo Ortega-Alonso
Markku Alén
Jaakko Kaprio
Jouko Karjalainen
Taina Rantanen
Urho M Kujala
Author Affiliation
Department of Health Sciences, University of Jyväskylä, Finland. sara.mutikainen@gmail.com
Source
Ann Noninvasive Electrocardiol. 2009 Jan;14(1):57-64
Date
Jan-2009
Language
English
Publication Type
Article
Keywords
Aged
Aging - genetics
Cohort Studies
Confidence Intervals
Electrocardiography
Female
Finland
Genetic Predisposition to Disease
Heart rate - genetics
Humans
Middle Aged
Reference Values
Rest
Twins
Twins, Dizygotic
Twins, Monozygotic
Abstract
Previous studies in young and middle-aged men and women have shown that resting electrocardiographic (ECG) variables are influenced by genetic factors. However, the extent to which resting ECG variables are influenced by genetic factors in older women is unknown. Thus, the aim of this study was to estimate the relative contribution of genetic and environmental influences to individual differences in resting ECG variables among older female twins without overt cardiac diseases.
Resting ECG recordings were obtained from 186 monozygotic and 203 dizygotic twin individuals, aged 63-76 years. Quantitative genetic modeling was used to decompose the phenotypic variance in each resting ECG variable into additive genetic, dominance genetic, shared environmental, and unique environmental influences.
The results showed that individual differences in the majority of the resting ECG variables were moderately to highly explained by additive genetic influences, ranging from 32% for T axis to 72% for TV(5). The results also suggested dominance genetic influences on QRS duration, TV(1), and Sokolow-Lyon voltage (36%, 53%, and 57%, respectively). Unique environmental influences were important for each resting ECG variable, whereas shared environmental influences were detected only for QT interval and QTc.
In older women without overt cardiac diseases, genetic influences explain a moderate to high proportion of individual differences in the majority of the resting ECG variables. Genetic influences are especially strong for T-wave amplitudes, left ventricular mass, and hypertrophy indices, whereas other variables, including heart rate, intervals, and axes, are more affected by environmental influences.
PubMed ID
19149794 View in PubMed
Less detail

Genetic influences underlying self-rated health in older female twins.

https://arctichealth.org/en/permalink/ahliterature174438
Source
J Am Geriatr Soc. 2005 Jun;53(6):1002-7
Publication Type
Article
Date
Jun-2005
Author
Raija Leinonen
Jaakko Kaprio
Marja Jylhä
Asko Tolvanen
Markku Koskenvuo
Eino Heikkinen
Taina Rantanen
Author Affiliation
Finnish Center for Interdisciplinary Gerontology, Department of Health Sciences, University of Jyväskylaä, Finland. raija.leinonen@sport.jyu.fi
Source
J Am Geriatr Soc. 2005 Jun;53(6):1002-7
Date
Jun-2005
Language
English
Publication Type
Article
Keywords
Activities of Daily Living
Aged
Cross-Sectional Studies
Depression - epidemiology
Diseases in Twins - epidemiology
Environment
Female
Finland - epidemiology
Health status
Humans
Logistic Models
Mental health
Middle Aged
Multivariate Analysis
Self Concept
Twins - genetics
Walking
Abstract
To examine the genetic and environmental sources of variation in self-rated health (SRH) in older female twins and to explore the roles of morbidity, functional limitation, and psychological well-being as mediators of genetic and environmental effects on SRH.
Cross-sectional analysis of twin data.
Research laboratory.
One hundred two monozygotic and 115 dizygotic female twin pairs aged 63 to 76.
SRH was categorized as good, average, or poor. Morbidity was described using a physician-assessed disease-severity scale together with information about the presence of diabetes mellitus and cancer. Maximal walking speed measured over 10 m was used to assess physical functional limitation; the Mini-Mental State Examination and the Center for Epidemiologic Studies Depression Scale were used to characterize psychological well-being. The contributions of genetic and environmental (defined as familial (shared by siblings) or nonshared (unique to each sibling)) effects were assessed using univariate and multivariate structural equation modeling of twin data.
SRH did not have its own specific genetic effect but shared a genetic component in common with the genetic components underlying liability to disease severity, maximal walking speed, and depressive symptoms. It accounted for 64% of the variation in SRH, with environmental effects accounting for the remaining variation.
The current results suggest that there are no specific genetic effects on SRH but rather that genetic influences on SRH are mediated through genetic influences affecting chronic diseases, functional limitation, and mood.
PubMed ID
15935024 View in PubMed
Less detail

Hearing as a predictor of falls and postural balance in older female twins.

https://arctichealth.org/en/permalink/ahliterature152870
Source
J Gerontol A Biol Sci Med Sci. 2009 Feb;64(2):312-7
Publication Type
Article
Date
Feb-2009
Author
Anne Viljanen
Jaakko Kaprio
Ilmari Pyykkö
Martti Sorri
Satu Pajala
Markku Kauppinen
Markku Koskenvuo
Taina Rantanen
Author Affiliation
Department of Health Sciences, Finnish Centre for Interdisciplinary Gerontology, Finland. anne.viljanen@sport.jyu.fi
Source
J Gerontol A Biol Sci Med Sci. 2009 Feb;64(2):312-7
Date
Feb-2009
Language
English
Publication Type
Article
Keywords
Accidental Falls - statistics & numerical data
Aged
Aging - genetics - physiology
Audiometry
Confidence Intervals
Female
Finland
Hearing - genetics
Hearing Loss - diagnosis - epidemiology - genetics
Humans
Incidence
Middle Aged
Postural Balance - physiology
Predictive value of tests
Risk assessment
Sampling Studies
Sensitivity and specificity
Twins
Twins, Dizygotic
Twins, Monozygotic
Abstract
The purpose of the present study was to examine, first, whether hearing acuity predicts falls and whether the potential association is explained by postural balance and, second, to examine whether shared genetic or environmental effects underlie these associations.
Hearing was measured using a clinical audiometer as a part of the Finnish Twin Study on Aging in 103 monozygotic and 114 dizygotic female twin pairs aged 63-76 years. Postural balance was indicated as a center of pressure (COP) movement in semi-tandem stance, and participants filled in a fall-calendar daily for an average of 345 days after the baseline.
Mean hearing acuity (better ear hearing threshold level at 0.5-4 kHz) was 21 dB (standard deviation [SD] 12). Means of the COP velocity moment for the best to the poorest hearing quartiles increased linearly from 40.7 mm(2)/s (SD 24.4) to 52.8 mm(2)/s (SD 32.0) (p value for the trend = .003). Altogether 199 participants reported 437 falls. Age-adjusted incidence rate ratios (IRRs) for falls, with the best hearing quartile as a reference, were 1.2 (95% confidence interval [CI] = 0.4-3.8) in the second, 4.1 (95% CI = 1.1-15.6) in the third, and 3.4 (95% CI = 1.0-11.4) in the poorest hearing quartiles. Adjustment for COP velocity moment decreased IRRs markedly. Twin analyses showed that the association between hearing acuity and postural balance was not explained by genetic factors in common for these traits.
People with poor hearing acuity have a higher risk for falls, which is partially explained by their poorer postural control. Auditory information about environment may be important for safe mobility.
Notes
Cites: Am J Otolaryngol. 1999 Nov-Dec;20(6):371-810609481
Cites: J Gerontol A Biol Sci Med Sci. 2008 Feb;63(2):171-818314453
Cites: Gait Posture. 2002 Aug;16(1):1-1412127181
Cites: Arch Neurol. 2003 Jun;60(6):835-912810488
Cites: J Clin Epidemiol. 2003 Jul;56(7):659-6812921935
Cites: J Appl Physiol (1985). 2004 Jan;96(1):308-1512959956
Cites: Ann Epidemiol. 2004 May;14(5):311-815177269
Cites: Acta Otolaryngol. 1973 Aug-Sep;76(2):208-204543916
Cites: J Psychiatr Res. 1975 Nov;12(3):189-981202204
Cites: Prog Clin Biol Res. 1978;24 Pt B:179-84569306
Cites: Dan Med Bull. 1987 Apr;34 Suppl 4:1-243595217
Cites: Lancet. 1987 Aug 1;2(8553):261-42886727
Cites: Age Ageing. 1989 Jan;18(1):31-42711920
Cites: Br J Ind Med. 1992 Feb;49(2):138-411536822
Cites: Ann Otol Rhinol Laryngol. 1993 Jan;102(1 Pt 2):1-168420477
Cites: J Gerontol. 1994 Mar;49(2):M72-848126355
Cites: J Gerontol A Biol Sci Med Sci. 1996 Mar;51(2):M53-638612104
Cites: Br J Audiol. 1999 Feb;33(1):53-910219722
Cites: Curr Opin Otolaryngol Head Neck Surg. 2005 Dec;13(6):343-816282762
Cites: Lancet. 2005 Nov 26;366(9500):1885-9316310556
Cites: J Am Geriatr Soc. 2006 Apr;54(4):613-816686871
Cites: Am J Epidemiol. 2006 Aug 1;164(3):246-5616731575
Cites: Tohoku J Exp Med. 2006 Aug;209(4):291-30116864951
Cites: Age Ageing. 2006 Sep;35 Suppl 2:ii7-ii1116926210
Cites: Curr Pharm Des. 2007;13(1):119-2617266591
Cites: J Gerontol A Biol Sci Med Sci. 2007 Apr;62(4):447-5217452741
Cites: J Gerontol A Biol Sci Med Sci. 2007 Nov;62(11):1294-918000151
Cites: Int J Audiol. 2007 Dec;46(12):772-918049966
Cites: J Gerontol A Biol Sci Med Sci. 2000 Jan;55(1):M10-610719767
PubMed ID
19182227 View in PubMed
Less detail

Noise sensitivity and hearing disability.

https://arctichealth.org/en/permalink/ahliterature138473
Source
Noise Health. 2011 Jan-Feb;13(50):51-8
Publication Type
Article
Author
Marja Heinonen-Guzejev
Tapani Jauhiainen
Heikki Vuorinen
Anne Viljanen
Taina Rantanen
Markku Koskenvuo
Kauko Heikkilä
Helena Mussalo-Rauhamaa
Jaakko Kaprio
Author Affiliation
Department of Public Health, The Hjelt Institute, University of Helsinki, Helsinki, Finland. marja.heinonen@helsinki.fi
Source
Noise Health. 2011 Jan-Feb;13(50):51-8
Language
English
Publication Type
Article
Keywords
Adult
Aged
Aged, 80 and over
Audiometry
Case-Control Studies
Ear Protective Devices - utilization
Environmental Exposure - adverse effects
Female
Finland
Hearing Disorders - etiology - prevention & control
Humans
Hypertension - etiology
Logistic Models
Loudness Perception - physiology
Male
Middle Aged
Noise - adverse effects
Self Report
Stress, Psychological - etiology - psychology
Twin Studies as Topic
Abstract
The aim of this study was to investigate the association of noise sensitivity with self-reported hearing disability and hearing levels, with consideration of the role of self-reported history of noise exposure and use of hearing protectors. The study is based on the Finnish Twin Cohort. In 1988, a noise questionnaire was sent to 1005 twin pairs, 1495 individuals (688 men, 807 women) replied. The age range was 31-88 years. Information on some potential confounders was obtained from the questionnaire in 1981 for the same individuals. A subsample of thirty-eight elderly women with noise sensitivity response from 1988 had audiometry data from 2000 to 2001. Noise sensitivity was associated with self-reported hearing disability among all subjects [odds ratio (OR) 1.55, 95% confidence interval (CI) 1.14-2.12] and among women (OR 1.90, 95% CI 1.19-3.04), but no-more significantly among men (OR 1.31, 95% CI 0.86-1.98). The association was primarily seen among younger subjects (50 years or less). The difference between noise sensitive and non-noise sensitive elderly women in the average of thresholds at frequencies of 0.5-4 kHz in the better ear was not significant (Pr = 0.18). Noise sensitivity did not modify the association of hearing disability with the self-reported history of occupational noise exposure. Noise sensitivity was associated with the use of hearing protectors at work. The study shows the importance of recognizing the noise sensitive in noise effect studies, since sensitivity in annoyance has implications in most of the effect categories.
PubMed ID
21173487 View in PubMed
Less detail

Perceived stress symptoms in midlife predict disability in old age: a 28-year prospective cohort study.

https://arctichealth.org/en/permalink/ahliterature116696
Source
J Gerontol A Biol Sci Med Sci. 2013 Aug;68(8):984-91
Publication Type
Article
Date
Aug-2013
Author
Jenni Kulmala
Mikaela B von Bonsdorff
Sari Stenholm
Timo Törmäkangas
Monika E von Bonsdorff
Clas-Håkan Nygård
Matti Klockars
Jorma Seitsamo
Juhani Ilmarinen
Taina Rantanen
Author Affiliation
Gerontology Research Center and Department of Health Sciences, University of Jyväskylä, P.O. Box 35, FIN - 40014, Jyväskylä, Finland. jenni.kulmala@jyu.fi
Source
J Gerontol A Biol Sci Med Sci. 2013 Aug;68(8):984-91
Date
Aug-2013
Language
English
Publication Type
Article
Keywords
Activities of Daily Living
Adult
Aged
Aged, 80 and over
Aging - physiology - psychology
Cohort Studies
Disabled Persons
Female
Finland
Humans
Male
Middle Aged
Mobility Limitation
Prospective Studies
Risk factors
Stress, Psychological - physiopathology
Abstract
Stress has damaging effects on individual's health. However, information about the long-term consequences of mental stress is scarce.
This 28-year prospective cohort study examined on the associations between midlife stress and old age disability among 2,994 Finnish municipal professionals aged 44-58 years at baseline. Self-reported stress symptoms were assessed at baseline in 1981 and 4 years later in 1985 and perceived disability in 2009. For the baseline data, principal component analysis was used for differentiation into stress symptom profiles. The regression coefficient estimates for self-care disability (activities of daily living) and instrumental activities of daily living disability were estimated using left-censored regression. The odds ratios for mobility limitation were estimated using logistic regression.
Four midlife stress profiles were identified: negative reactions to work and depressiveness, perceived decrease in cognition, sleep disturbances, and somatic symptoms. We saw a clear gradient of increasing disability severity in old age for increasing intensity of midlife stress symptoms. In comparison with the participants with no stress symptoms, the extensively adjusted left-censored and logistic regression models showed that in old age, disability scores were almost 2-4 units higher and risk for mobility limitation was 2-3 times higher for those with constant stress symptoms in midlife.
Among occupationally active 44- to 58-year-old men and women, perceived stress symptoms in midlife correlated with disability 28 years later. Stress symptoms may be the first signs of decompensation of individual functioning relative to environmental demands, which may later manifest in disabilities.
PubMed ID
23371968 View in PubMed
Less detail

Promoting mobility after hip fracture (ProMo): study protocol and selected baseline results of a year-long randomized controlled trial among community-dwelling older people.

https://arctichealth.org/en/permalink/ahliterature129064
Source
BMC Musculoskelet Disord. 2011;12:277
Publication Type
Article
Date
2011
Author
Sarianna Sipilä
Anu Salpakoski
Johanna Edgren
Ari Heinonen
Markku A Kauppinen
Marja Arkela-Kautiainen
Sanna E Sihvonen
Maija Pesola
Taina Rantanen
Mauri Kallinen
Author Affiliation
Gerontology Research Centre, University of Jyväskylä, Jyväskylä, Finland. sarianna.sipila@jyu.fi
Source
BMC Musculoskelet Disord. 2011;12:277
Date
2011
Language
English
Publication Type
Article
Keywords
Age Factors
Aged
Aged, 80 and over
Aging
Biomechanical Phenomena
Disability Evaluation
Female
Finland
Hip Fractures - diagnosis - physiopathology - rehabilitation
Hip Joint - physiopathology
Humans
Independent living
Male
Middle Aged
Patient compliance
Physical Therapy Modalities
Program Evaluation
Range of Motion, Articular
Recovery of Function
Research Design
Time Factors
Treatment Outcome
Abstract
To cope at their homes, community-dwelling older people surviving a hip fracture need a sufficient amount of functional ability and mobility. There is a lack of evidence on the best practices supporting recovery after hip fracture. The purpose of this article is to describe the design, intervention and demographic baseline results of a study investigating the effects of a rehabilitation program aiming to restore mobility and functional capacity among community-dwelling participants after hip fracture.
Population-based sample of over 60-year-old community-dwelling men and women operated for hip fracture (n = 81, mean age 79 years, 78% were women) participated in this study and were randomly allocated into control (Standard Care) and ProMo intervention groups on average 10 weeks post fracture and 6 weeks after discharged to home. Standard Care included written home exercise program with 5-7 exercises for lower limbs. Of all participants, 12 got a referral to physiotherapy. After discharged to home, only 50% adhered to Standard Care. None of the participants were followed-up for Standard Care or mobility recovery. ProMo-intervention included Standard Care and a year-long program including evaluation/modification of environmental hazards, guidance for safe walking, pain management, progressive home exercise program and physical activity counseling. Measurements included a comprehensive battery of laboratory tests and self-report on mobility limitation, disability, physical functional capacity and health as well as assessments for the key prerequisites for mobility, disability and functional capacity. All assessments were performed blinded at the research laboratory. No significant differences were observed between intervention and control groups in any of the demographic variables.
Ten weeks post hip fracture only half of the participants were compliant to Standard Care. No follow-up for Standard Care or mobility recovery occurred. There is a need for rehabilitation and follow-up for mobility recovery after hip fracture. However, the effectiveness of the ProMo program can only be assessed at the end of the study.
Current Controlled Trials ISRCTN53680197.
Notes
Cites: Age Ageing. 2001 Nov;30(6):489-9411742778
Cites: J Gerontol A Biol Sci Med Sci. 2000 Aug;55(8):M434-4010952365
Cites: J Gerontol B Psychol Sci Soc Sci. 2003 Sep;58(5):P283-9014507935
Cites: Arch Orthop Trauma Surg. 2003 Dec;123(10):551-413680273
Cites: J Am Geriatr Soc. 2004 Apr;52(4):625-3415066083
Cites: BMC Med Res Methodol. 2004 Apr 17;4:815090073
Cites: Arch Phys Med Rehabil. 2004 May;85(5):710-615129393
Cites: Osteoporos Int. 2004 Jun;15(6):475-8215205719
Cites: JAMA. 2004 Aug 18;292(7):837-4615315998
Cites: Am J Med. 2004 Oct 15;117(8):569-7415465505
Cites: Schizophr Bull. 2000;26(3):533-4110993394
Cites: J Gerontol A Biol Sci Med Sci. 2000 Sep;55(9):M498-50710995047
Cites: J Bone Joint Surg Am. 2001 Apr;83-A(4):493-50011315777
Cites: Clin Rehabil. 2001 Jun;15(3):282-9011386398
Cites: N Engl J Med. 2002 Oct 3;347(14):1068-7412362007
Cites: J Psychiatr Res. 1975 Nov;12(3):189-981202204
Cites: Acta Med Scand Suppl. 1986;711:233-73535411
Cites: J Gerontol. 1994 Mar;49(2):M85-948126356
Cites: J Gerontol A Biol Sci Med Sci. 1995 Jan;50A(1):M28-347814786
Cites: Acta Physiol Scand. 1996 Apr;156(4):457-648732251
Cites: J Pers Assess. 1996 Dec;67(3):588-978991972
Cites: Calcif Tissue Int. 1999 Sep;65(3):183-710441647
Cites: J Am Geriatr Soc. 2004 Dec;52(12):2062-815571543
Cites: MMWR Recomm Rep. 2000 Mar 31;49(RR-2):3-1215580729
Cites: Arch Phys Med Rehabil. 2005 Sep;86(9):1838-4216181951
Cites: Arch Phys Med Rehabil. 2005 Oct;86(10):1953-716213237
Cites: J Clin Epidemiol. 2005 Dec;58(12):1289-9816291474
Cites: Prev Sci. 2005 Sep;6(3):151-7516365954
Cites: Psychol Med. 2006 Nov;36(11):1635-4516863598
Cites: Pain. 2007 Mar;128(1-2):69-7717055167
Cites: Scand J Med Sci Sports. 2007 Apr;17(2):156-6417394477
Cites: Osteoporos Int. 2007 Aug;18(8):1083-9017323107
Cites: Ann Behav Med. 2007 Aug;34(1):67-7617688398
Cites: Med Sci Sports Exerc. 2007 Aug;39(8):1423-3417762377
Cites: Am J Phys Med Rehabil. 2008 May;87(5):354-6218174852
Cites: Arch Phys Med Rehabil. 2008 Sep;89(9):1667-7418760151
Cites: J Gerontol A Biol Sci Med Sci. 2009 Jan;64(1):83-919164270
Cites: Arch Phys Med Rehabil. 2009 Apr;90(4):618-2219345777
Cites: J Gerontol A Biol Sci Med Sci. 2009 May;64(5):568-7419228788
Cites: J Bone Joint Surg Am. 2009 Jul;91(7):1720-819571095
Cites: Am J Epidemiol. 2009 Nov 15;170(10):1290-919808632
Cites: Gerontology. 2009;55(6):630-619776539
Cites: JAMA. 2009 Nov 25;302(20):2214-2119934422
Cites: Arch Phys Med Rehabil. 2010 Jun;91(6):879-8420510978
Cites: Am J Phys Med Rehabil. 2010 Jul;89(7):530-4020567135
Cites: J Gerontol A Biol Sci Med Sci. 2010 Sep;65(9):1012-2020530242
Cites: J Am Geriatr Soc. 2010 Oct;58(10):1911-720929467
Cites: JAMA. 2010 Nov 3;304(17):1919-2821045098
Cites: Gerontology. 2011;57(1):19-2720516668
Cites: Age Ageing. 2011 Mar;40(2):221-721247887
Cites: Cochrane Database Syst Rev. 2011;(3):CD00170421412873
Cites: Bone. 2011 Apr 1;48(4):828-3621211578
Cites: Injury. 2011 Nov;42(11):1253-621238963
PubMed ID
22145912 View in PubMed
Less detail

Shared genetic and environmental effects on strength and power in older female twins.

https://arctichealth.org/en/permalink/ahliterature176744
Source
Med Sci Sports Exerc. 2005 Jan;37(1):72-8
Publication Type
Article
Date
Jan-2005
Author
Kristina Tiainen
Sarianna Sipilä
Markku Alén
Eino Heikkinen
Jaakko Kaprio
Markku Koskenvuo
Asko Tolvanen
Satu Pajala
Taina Rantanen
Author Affiliation
The Finnish Centre for Interdisciplinary Gerontology, Department of Health Sciences, University of Jyväskylä, P.O. Box 35(Viveca), Fin-40014 University of Jyväskylä, Finland. tiainen@sport.jyu.fi
Source
Med Sci Sports Exerc. 2005 Jan;37(1):72-8
Date
Jan-2005
Language
English
Publication Type
Article
Keywords
Aged
Cohort Studies
Exercise - physiology
Female
Finland
Humans
Knee - physiology
Lower Extremity - physiology
Middle Aged
Muscles - physiology
Twins - physiology
Twins, Dizygotic
Twins, Monozygotic
Abstract
This study examined the relative contribution of genetic and environmental effects on maximal leg extensor power and also investigated whether leg extensor power and maximum voluntary isometric knee extensor strength share a genetic component.
Muscle functions were measured as part of the Finnish Twin Study on Aging in 101 monozygotic (MZ) and 116 dizygotic (DZ) female twin pairs aged 63-76 yr. Leg extensor power was measured using the Nottingham Leg Extensor Power Rig and maximum voluntary isometric knee extensor strength using an adjustable dynamometer chair. The analyses were carried out using the maximum likelihood method in Mx-program on the raw data set.
A bivariate Cholesky decomposition model showed that leg extensor power and isometric knee extensor strength shared a genetic component in common, which accounted for 32% of the total variance in leg extensor power and 48% in isometric knee extensor strength. In addition, power and strength had a nonshared environmental effect in common accounting for four percent of the variance in power and 52% in strength. Remaining variance for leg extensor power was due to trait-specific shared and nonshared environmental effects.
Observed genetic effect in common for leg extensor power and maximum voluntary isometric knee extensor strength indicated that these two traits are regulated by the same genes. However, also environmental effects have a significant role in explaining the variability in power and strength.
PubMed ID
15632671 View in PubMed
Less detail

9 records – page 1 of 1.