Skip header and navigation

Refine By

19 records – page 1 of 1.

Serum dioxins and polychlorinated biphenyls are associated with growth among Russian boys.

https://arctichealth.org/en/permalink/ahliterature138353
Source
Pediatrics. 2011 Jan;127(1):e59-68
Publication Type
Article
Date
Jan-2011
Author
Jane S Burns
Paige L Williams
Oleg Sergeyev
Susan Korrick
Mary M Lee
Boris Revich
Larisa Altshul
Julie T Del Prato
Olivier Humblet
Donald G Patterson
Wayman E Turner
Larry L Needham
Mikhail Starovoytov
Russ Hauser
Author Affiliation
Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave, Building I, Room 1404E, Boston, MA 02115, USA. jburns@hsph.harvard.edu
Source
Pediatrics. 2011 Jan;127(1):e59-68
Date
Jan-2011
Language
English
Publication Type
Article
Keywords
Child
Dioxins - blood
Environmental Exposure - adverse effects
Follow-Up Studies
Growth
Humans
Male
Polychlorinated biphenyls - blood
Prospective Studies
Russia
Abstract
We evaluated the associations of serum dioxins and polychlorinated biphenyls (PCBs) with longitudinally assessed growth measurements among peripubertal Russian boys.
A total of 499 boys from Chapaevsk, Russia, aged 8 to 9 years were enrolled in the study from 2003 to 2005 and were followed prospectively for 3 years. Blood samples were collected and physical examinations were conducted at entry and repeated at annual study visits. Multivariate mixed-effects regression models for repeated measures were used to examine the associations of serum dioxins and PCBs with longitudinal measurements of BMI, height, and height velocity.
Serum dioxin (total 2005 toxic equivalency [TEQ] median: 21.1 pg/g lipid) and PCBs (median sum of PCBs: 250 ng/g lipid) were measured in 468 boys. At study entry and during 3 years of follow-up, >50% of the boys had age-adjusted BMI and height z scores within 1 SD of World Health Organization-standardized mean values for age. Boys in the highest exposure quintile of the sum of dioxin and PCB concentrations and total TEQs had a significant decrease in mean BMI z scores of 0.67 for dioxins and TEQs and 1.04 for PCBs, compared with boys in the lowest exposure quintile. Comparison of the highest versus the lowest quintile revealed that higher serum PCB concentrations were associated with significantly lower height z scores (mean z-score decrease: 0.41) and height velocity (mean decrease: 0.19 cm/year) after 3 years of follow-up.
Our findings suggest that exposures to dioxins and PCBs are associated with reduced growth during the peripubertal period and may compromise adult body mass, stature, and health.
Notes
Cites: Environ Health Perspect. 2004 Feb;112(2):257-6514754581
Cites: Arch Pediatr Adolesc Med. 2004 Mar;158(3):236-4314993082
Cites: Anal Chem. 2004 Apr 1;76(7):1921-715053652
Cites: Am J Clin Nutr. 2004 Jul;80(1):185-9215213047
Cites: Annu Rev Pharmacol Toxicol. 1984;24:85-1036428301
Cites: Pediatrics. 1986 Mar;77(3):281-83951909
Cites: Anal Chem. 1987 Aug 1;59(15):2000-53631519
Cites: Arch Environ Contam Toxicol. 1989 Jul-Aug;18(4):495-5002505694
Cites: Pediatrics. 1991 Nov;88(5):886-921945627
Cites: J Toxicol Environ Health. 1994 Jan;41(1):83-938277528
Cites: Environ Health Perspect. 1994 Jan;102 Suppl 1:135-478187703
Cites: Prev Med. 1997 Nov-Dec;26(6):808-169388792
Cites: Vopr Pitan. 1998;(3):8-139752664
Cites: Pediatr Res. 1998 Oct;44(4):538-459773843
Cites: Environ Health Perspect. 1999 Jan;107(1):45-519872716
Cites: J Pediatr. 1999 May;134(5):623-3010228299
Cites: Chemosphere. 2005 Mar;58(9):1185-20115667840
Cites: Chemosphere. 2005 Aug;60(7):898-90615992596
Cites: Environ Health. 2005;4(1):815918907
Cites: Epidemiology. 2005 Sep;16(5):648-5616135941
Cites: Environ Health Perspect. 2006 May;114(5):779-8516675437
Cites: Environ Res. 2006 Jul;101(3):419-2816445906
Cites: Chemosphere. 2007 Mar;67(3):498-50417123573
Cites: Am J Clin Nutr. 2007 Sep;86(3):618-2417823425
Cites: Environ Health Perspect. 2008 Sep;116(9):1231-618795168
Cites: Am J Clin Nutr. 2008 Oct;88(4):1040-818842792
Cites: Chemosphere. 2008 Oct;73(6):999-100418707752
Cites: Chemosphere. 2008 Oct;73(6):907-1418718632
Cites: Chemosphere. 2009 Jan;74(3):428-3318986677
Cites: Arch Pediatr. 2009 Jan;16(1):47-5319036567
Cites: Environ Health Perspect. 2009 Jan;117(1):122-619165398
Cites: Occup Environ Med. 2009 Mar;66(3):143-919060027
Cites: Ann Hum Biol. 2009 May-Jun;36(3):331-4119381987
Cites: Environ Res. 2009 May;109(4):495-50219278675
Cites: Vital Health Stat 11. 2009 Apr;(249):1-6819642512
Cites: Horm Res. 2009;72(2):74-8119690424
Cites: Environ Res. 2009 Oct;109(7):906-1319683226
Cites: Environ Health Perspect. 2009 Oct;117(10):1593-920019911
Cites: Arch Pediatr Adolesc Med. 2010 Jan;164(1):53-6020048242
Cites: Am J Prev Med. 2010 Jan;38(1):74-720117560
Cites: Diabetes Res Clin Pract. 2010 Feb;87(2):283-9220115937
Cites: Environ Int. 2010 May;36(4):330-720181395
Cites: Am J Hum Biol. 2010 May-Jun;22(3):353-919856426
Cites: Pediatrics. 2010 May;125(5):e1088-9620368318
Cites: J Clin Endocrinol Metab. 2010 Jul;95(7):3194-20020427487
Cites: Osteoporos Int. 2011 Jan;22(1):69-7320379699
Cites: Cancer Epidemiol Biomarkers Prev. 2007 Oct;16(10):1925-3017932339
Cites: Bull World Health Organ. 2007 Sep;85(9):660-718026621
Cites: Environ Health Perspect. 2007 Dec;115(12):1780-618087600
Cites: J Pediatr Health Care. 2008 Mar-Apr;22(2):83-9318294577
Cites: Environ Health Perspect. 2008 Jul;116(7):976-8018629324
Cites: Chemosphere. 2008 Aug;73(1 Suppl):S261-7718511103
Cites: J Pediatr. 2000 Apr;136(4):490-610753247
Cites: Arch Dis Child. 2001 Mar;84(3):218-2111207167
Cites: Epidemiology. 2002 Mar;13(2):205-1011880762
Cites: Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9990-512107286
Cites: Biochem Biophys Res Commun. 2003 Mar 7;302(2):336-4112604351
Cites: J Pediatr Endocrinol Metab. 2003 Feb;16(2):169-7812713253
Cites: J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Aug 25;794(1):137-4812888206
PubMed ID
21187307 View in PubMed
Less detail

Associations of Peripubertal Serum Dioxin and Polychlorinated Biphenyl Concentrations with Pubertal Timing among Russian Boys.

https://arctichealth.org/en/permalink/ahliterature282988
Source
Environ Health Perspect. 2016 Nov;124(11):1801-1807
Publication Type
Article
Date
Nov-2016
Author
Jane S Burns
Mary M Lee
Paige L Williams
Susan A Korrick
Oleg Sergeyev
Thuy Lam
Boris Revich
Russ Hauser
Source
Environ Health Perspect. 2016 Nov;124(11):1801-1807
Date
Nov-2016
Language
English
Publication Type
Article
Keywords
Adolescent
Child
Dioxins - blood - toxicity
Environmental Exposure - analysis
Humans
Longitudinal Studies
Male
Polychlorinated Biphenyls - blood - toxicity
Russia
Sexual Maturation - drug effects
Time Factors
Abstract
Dioxins, furans, and polychlorinated biphenyls (PCBs), dioxin-like and non-dioxin-like, have been linked to alterations in puberty.
We examined the association of peripubertal serum levels of these compounds [and their toxic equivalents (TEQs)] with pubertal onset and maturity among Russian boys enrolled at ages 8-9 years and followed prospectively through ages 17-18 years.
At enrollment, 473 boys had serum dioxin-like compounds and PCBs measured. At the baseline visit and annually until age 17-18 years, a physician performed pubertal staging [genitalia (G), pubarche (P), and testicular volume (TV)]. Three hundred fifteen subjects completed the follow-up visit at 17-18 years of age. Pubertal onset was defined as TV > 3 mL, G2, or P2. Sexual maturity was defined as TV = 20 mL, G5, or P5. Multivariable interval-censored models were used to evaluate associations of lipid-standardized concentrations with pubertal timing.
Medians (interquartile ranges) of the sum of dioxin-like compounds, TEQs, and non-dioxin-like PCBs were 362 pg/g lipid (279-495), 21.1 pg TEQ/g lipid (14.4-33.2), and 250 ng/g lipid (164-395), respectively. In adjusted models, the highest compared to lowest TEQ quartile was associated with later pubertal onset [TV = 11.6 months (95% CI: 3.8, 19.4); G2 = 10.1 months (95% CI: 1.4, 18.8)] and sexual maturity [TV = 11.6 months (95% CI: 5.7, 17.6); G5 = 9.7 months (95% CI: 3.1, 16.2)]. However, the highest compared to the lowest quartile of non-dioxin-like PCBs, when co-adjusted by TEQs, was associated with earlier pubertal onset [TV = -8.3 months (95% CI:-16.2, -0.3)] and sexual maturity [TV = -6.3 months (95% CI:-12.2, -0.3); G5 = -7.2 months (95% CI:-13.8, -0.6)]; the non-dioxin-like PCB associations were only significant when adjusted for TEQs. TEQs and PCBs were not significantly associated with pubic hair development.
Our results suggest that TEQs may delay, while non-dioxin-like PCBs advance, the timing of male puberty. Citation: Burns JS, Lee MM, Williams PL, Korrick SA, Sergeyev O, Lam T, Revich B, Hauser R. 2016. Associations of peripubertal serum dioxin and polychlorinated biphenyl concentrations with pubertal timing among Russian boys. Environ Health Perspect 124:1801-1807; http://dx.doi.org/10.1289/EHP154.
Notes
Cites: Environ Int. 2014 Oct;71:20-824950161
Cites: Environ Health Perspect. 2011 Sep;119(9):1339-4421527364
Cites: Toxicol Sci. 2003 Jul;74(1):182-9112730615
Cites: J Pediatr. 2000 Apr;136(4):490-610753247
Cites: Horm Res Paediatr. 2012;77(3):137-4522508036
Cites: Vopr Pitan. 1998;(3):8-139752664
Cites: Reprod Toxicol. 2012 Dec;34(4):498-50322841741
Cites: Environ Health Perspect. 2002 Aug;110(8):771-612153757
Cites: Reprod Toxicol. 2014 Apr;44:73-8424211603
Cites: Chemosphere. 2008 Oct;73(6):999-100418707752
Cites: Pediatrics. 2008 Feb;121 Suppl 3:S172-9118245511
Cites: Acta Paediatr. 2015 Jun;104(6):e271-825664405
Cites: Horm Behav. 2013 Jul;64(2):262-923998670
Cites: Environ Health Perspect. 2009 Oct;117(10 ):1593-920019911
Cites: Environ Health Perspect. 2009 Mar;117(3):417-2519337517
Cites: Chemosphere. 2005 Aug;60(7):898-90615992596
Cites: Bull World Health Organ. 2007 Sep;85(9):660-718026621
Cites: J Expo Sci Environ Epidemiol. 2011 May-Jun;21(3):224-3320197795
Cites: Endocrinology. 2003 Mar;144(3):767-7612586752
Cites: J Toxicol Environ Health A. 2005 Sep;68(17-18):1447-5616076757
Cites: Am J Clin Nutr. 1996 Jul;64(1):18-248669409
Cites: Nat Rev Endocrinol. 2014 Feb;10(2):67-924275741
Cites: Endocrinology. 2012 Sep;153(9):4097-11022733974
Cites: Pediatrics. 2009 May;123(5):e932-919403485
Cites: Environ Health Perspect. 2015 Oct;123(10):1046-5225956003
Cites: Pediatrics. 2011 Jan;127(1):e59-6821187307
Cites: Asian J Androl. 2014 Jan-Feb;16(1):89-9624369137
Cites: Pediatrics. 2012 Nov;130(5):e1058-6823085608
Cites: Arch Dis Child. 1976 Mar;51(3):170-9952550
Cites: Prev Med. 1997 Nov-Dec;26(6):808-169388792
Cites: Front Neuroendocrinol. 2015 Jul;38:12-3625592640
Cites: J Endocrinol. 2013 Jul 11;218(2):R1-1223709001
Cites: J Pediatr Endocrinol Metab. 2003 Feb;16(2):169-7812713253
Cites: Int J Obes (Lond). 2013 Aug;37(8):1036-4323164700
Cites: Toxicol Sci. 2007 Sep;99(1):224-3317545211
Cites: Environ Health. 2005 May 26;4(1):815918907
Cites: Environ Health Perspect. 2008 Jul;116(7):976-8018629324
Cites: Toxicol Sci. 2006 Oct;93(2):223-4116829543
Cites: Stat Med. 1998 Jan 30;17(2):219-389483730
Cites: Semin Reprod Med. 2004 Nov;22(4):337-4715635501
Cites: Epidemiology. 2011 Nov;22(6):827-3521968773
Cites: J Biomed Biotechnol. 2010;2010:null20862379
Cites: Reproduction. 2005 Jun;129(6):675-8315923383
Cites: J Adolesc Health. 2010 Sep;47(3):282-920708568
Cites: J Clin Endocrinol Metab. 1996 Mar;81(3):1152-58772591
Cites: J Pediatr. 1995 Jul;127(1):100-27608791
Cites: Pediatrics. 1997 Apr;99(4):505-129093289
Cites: Environ Health Perspect. 2015 Sep;123(9):888-9425769180
PubMed ID
27187981 View in PubMed
Less detail

Longitudinal assessment of PCBs and chlorinated pesticides in pregnant women from Western Canada.

https://arctichealth.org/en/permalink/ahliterature174509
Source
Environ Health. 2005;4:10
Publication Type
Article
Date
2005
Author
John Jarrell
Siu Chan
Russ Hauser
Howard Hu
Author Affiliation
Department of Obstetrics and Gynecology, University of Calgary, 1430 29th ST NW, Calgary, AB T2N 2T9, Canada. john.jarrell@shaw.ca
Source
Environ Health. 2005;4:10
Date
2005
Language
English
Publication Type
Article
Keywords
Adult
Alberta
Amniotic Fluid - chemistry
Environmental Exposure - analysis
Environmental pollutants - blood
Female
Fetal Blood - chemistry
Genetic Counseling
Humans
Insecticides - blood
Longitudinal Studies
Maternal Exposure
Milk, human - chemistry
Polychlorinated biphenyls - blood
Pregnancy
Pregnancy Trimester, Second - blood
Abstract
Maternal exposures to organochlorines prior to pregnancy are considered a risk to neonatal welfare, specifically in relation to neurocognitive functions. There is growing interest in the evaluation of maternal blood testing as a marker for fetal exposure as well as the variable geographic distribution of these priority chemicals.
Three hundred and twenty-three women in the second trimester of pregnancy entered the study at a prenatal clinic providing genetic counselling information. Subjects who had an indication for genetic amniocentesis based on late maternal age were eligible to participate. Two hundred and thirty-eight completed an environmental questionnaire. A sample of amniotic fluid was taken for karyotype analysis in 323 women and blood samples during pregnancy (209), at birth (105) and from the umbilical cord (97) and breast milk (47) were also collected. These samples were tested for 29 PCB congeners and organochlorine pesticides.
The concentrations of PCB 153 in these media were relatively low in relation to other studies. Sigma PCBs measurements in samples taken during the second trimester of pregnancy, at birth and in the umbilical cord were strongly correlated. Specific measurements of PCB 153 and PCB 180 among those subjects with completed sampling of blood samples from mothers and cord samples were significantly correlated. The concentrations of PCBs and pesticides did not differ in relation to prior spontaneous abortion history. There were no organochlorines present in the amniotic fluid at the current level of quantification.
Pregnant women from the Western Canada region of Calgary, Alberta are exposed to relatively low concentrations of organochlorines. Measurement of maternal blood during the second trimester of pregnancy can reliably estimate the fetal exposure to PCBs. This estimate is reliable for Group 2 and 3 PCBs as well as PCB 153 and PCB 180. The amniotic fluid does not contain measurable concentrations of pesticides and PCBs under the conditions of the levels of quantification.
Notes
Cites: Endocrinology. 2000 Jan;141(1):181-910614638
Cites: Environ Health Perspect. 2004 Dec;112(17):1691-615579415
Cites: Neurotoxicology. 2000 Dec;21(6):1029-3811233749
Cites: Lancet. 2001 Jul 14;358(9276):110-411463412
Cites: Mar Environ Res. 2002 Jun;53(5):425-5212054104
Cites: Environ Health Perspect. 2002 Jun;110 Suppl 3:355-6112060829
Cites: Environ Health Perspect. 2002 Aug;110(8):835-812153768
Cites: Toxicol Lett. 2002 Aug 5;134(1-3):253-812191885
Cites: J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Oct 5;778(1-2):147-5512376122
Cites: Sci Total Environ. 2002 Oct 21;298(1-3):45-5312449328
Cites: Environ Health Perspect. 2003 Jan;111(1):65-7012515680
Cites: J Occup Environ Med. 2003 May;45(5):526-3212762077
Cites: Environ Health Perspect. 2003 Jul;111(9):1253-812842782
Cites: Environ Health Perspect. 2003 Aug;111(10):1352-712896858
Cites: Environ Health Perspect. 2003 Oct;111(13):1670-714527849
Cites: Environ Health Perspect. 2004 Apr;112(5):516-2315064154
Cites: Acta Cytol. 1969 Jul;13(7):389-944242043
Cites: Bull Environ Contam Toxicol. 1975 Nov;14(5):588-92812580
Cites: Clin Chim Acta. 1980 Jan 31;100(3):201-77353308
Cites: Am J Public Health. 1984 Oct;74(10):1153-46433730
Cites: Arch Environ Contam Toxicol. 1984 Sep;13(5):517-276435547
Cites: Environ Health Perspect. 1985 May;60:215-213928347
Cites: Science. 1988 Jul 15;241(4863):334-63133768
Cites: Cent Eur J Public Health. 1994 Dec;2(2):73-67697024
Cites: N Engl J Med. 1996 Sep 12;335(11):783-98703183
Cites: Environ Health Perspect. 1997 Jan;105(1):13-49074863
Cites: J Toxicol Environ Health A. 1998 Apr 24;53(8):581-919572157
Cites: Food Addit Contam. 1998 Feb-Mar;15(2):127-349602917
Cites: J Expo Anal Environ Epidemiol. 2000 Nov-Dec;10(6 Pt 2):743-5411138666
PubMed ID
15927085 View in PubMed
Less detail

Predictors of serum dioxin levels among adolescent boys in Chapaevsk, Russia: a cross-sectional pilot study.

https://arctichealth.org/en/permalink/ahliterature174565
Source
Environ Health. 2005;4(1):8
Publication Type
Article
Date
2005
Author
Russ Hauser
Paige Williams
Larisa Altshul
Susan Korrick
Lynne Peeples
Donald G Patterson
Wayman E Turner
Mary M Lee
Boris Revich
Oleg Sergeyev
Author Affiliation
Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, I-1405, Boston, MA 02115, USA. rhauser@hohp.harvard.edu
Source
Environ Health. 2005;4(1):8
Date
2005
Language
English
Publication Type
Article
Keywords
Adolescent
Age Factors
Chemical Industry
Cross-Sectional Studies
Demography
Diet
Dioxins - blood - toxicity
Environmental Exposure - adverse effects - analysis
Furans - blood - toxicity
Humans
Male
Pilot Projects
Polychlorinated Biphenyls - blood - toxicity
Puberty - drug effects
Risk assessment
Russia
Time Factors
Abstract
Toxicological studies and limited human studies have demonstrated associations between exposure to polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) and adverse developmental and reproductive health effects. Given that children may be particularly susceptible to reproductive and developmental effects of organochlorines, and the paucity of information available regarding childhood exposures to dioxins in particular, we undertook a pilot study to describe the distribution of, and identify potential predictors of exposure to, dioxin-like compounds and dioxins among adolescent boys in Chapaevsk, Russia. The pilot study was also designed to guide the development of a large prospective cohort study on the relationship of exposure to PCDDs, PCDFs, and PCBs with growth and pubertal development in peri-pubertal Chapaevsk boys.
221 boys age 14 to 17 participated in the pilot study. Each of the boys, with his mother, was asked to complete a nurse-administered detailed questionnaire on medical history, diet, and lifestyle. The diet questions were used to measure the current and lifetime consumption of locally grown or raised foods. Blood samples from 30 of these boys were sent to the Centers for Disease Control and Prevention (CDC) for analysis of dioxins, furans and PCBs.
The median (25th, 75th percentile) concentrations for total PCDDs, PCDFs and coplanar PCBs were 95.8 pg/g lipids (40.9, 144), 33.9 pg/g lipids (20.4, 61.8), and 120 pg/g lipids (77.6, 157), respectively. For WHO-TEQs, the median (25th, 75th percentile) for total PCDDs, PCDFs, and coplanar PCBs were 0.29 (0.1, 9.14), 7.98 (5.27, 12.3), and 7.39 (4.51, 11.9), respectively. Although TCDD was largely non-detectable, two boys had high TCDD levels (17.9 and 21.7 pg/g lipid). Higher serum levels of sum of dioxin-like compounds and sum of dioxin TEQs were positively associated with increased age, consumption of fish, local meats other than chicken, PCB 118, and inversely with weeks of gestation.
The total TEQs among Chapaevsk adolescents were higher than most values previously reported in non-occupationally exposed populations of comparable or even older ages. Dietary consumption of local foods, as well as age and weeks of gestation, predicted dioxin exposure in this population.
Notes
Cites: Chemosphere. 2000 May-Jun;40(9-11):1103-910739052
Cites: J Expo Anal Environ Epidemiol. 2005 Jan;15(1):51-6515083163
Cites: Chemosphere. 2001 May-Jun;43(4-7):951-6611372889
Cites: J Expo Anal Environ Epidemiol. 2001 Sep-Oct;11(5):352-811687908
Cites: Environ Health Perspect. 2002 Apr;110(4):355-6111940453
Cites: Occup Environ Med. 2002 Jun;59(6):362-812040109
Cites: Environ Health Perspect. 2002 Aug;110(8):771-612153757
Cites: J Expo Anal Environ Epidemiol. 2002 Nov;12(6):409-1712415489
Cites: J Pediatr Endocrinol Metab. 2003 Feb;16(2):169-7812713253
Cites: Environ Health Perspect. 2004 Jan;112(1):22-714698926
Cites: Anal Chem. 1987 Aug 1;59(15):2000-53631519
Cites: Clin Chim Acta. 1989 Oct 16;184(3):219-262611996
Cites: Toxicol Appl Pharmacol. 1992 May;114(1):118-261585364
Cites: Toxicol Appl Pharmacol. 1994 Aug;127(2):241-98048067
Cites: Phys Med Biol. 1995 Sep;40(9):1475-858532760
Cites: Chemosphere. 1996 Feb;32(3):567-748907234
Cites: Chemosphere. 1997 Mar-Apr;34(5-7):1587-6039134690
Cites: Arch Toxicol. 1997;71(6):383-4009195020
Cites: Am J Public Health. 1997 Oct;87(10):1711-49357362
Cites: Chemosphere. 1998 Feb;36(3):419-269451808
Cites: Chemosphere. 1998 Oct-Nov;37(9-12):1817-239828310
Cites: Environ Health Perspect. 1998 Dec;106(12):775-929831538
Cites: Environ Health Perspect. 1999 Jan;107(1):45-519872716
Cites: Chemosphere. 1999 Feb;38(5):1123-3310028661
Cites: Chemosphere. 1999 Jun;38(15):3497-50210365432
Cites: Environ Health Perspect. 1999 Aug;107 Suppl 4:639-4910421775
Cites: J Pediatr. 2000 Apr;136(4):490-610753247
PubMed ID
15918907 View in PubMed
Less detail

Peripubertal serum dioxin concentrations and subsequent sperm methylome profiles of young Russian adults.

https://arctichealth.org/en/permalink/ahliterature295873
Source
Reprod Toxicol. 2018 06; 78:40-49
Publication Type
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Date
06-2018
Author
J Richard Pilsner
Alex Shershebnev
Yulia A Medvedeva
Alexander Suvorov
Haotian Wu
Andrey Goltsov
Evgeny Loukianov
Tatiana Andreeva
Fedor Gusev
Andrey Manakhov
Luidmila Smigulina
Maria Logacheva
Victoria Shtratnikova
Irina Kuznetsova
Peter Speranskiy-Podobed
Jane S Burns
Paige L Williams
Susan Korrick
Mary M Lee
Evgeny Rogaev
Russ Hauser
Oleg Sergeyev
Author Affiliation
Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA. Electronic address: rpilsner@umass.edu.
Source
Reprod Toxicol. 2018 06; 78:40-49
Date
06-2018
Language
English
Publication Type
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Keywords
Adolescent
Adult
Child
DNA Methylation
Endocrine Disruptors - blood
Environmental monitoring
Environmental pollutants - blood
Humans
Male
Polychlorinated Dibenzodioxins - blood
Puberty
Russia
Spermatozoa - metabolism
Whole Genome Sequencing
Young Adult
Abstract
The association of exposure to endocrine disrupting chemicals in the peripubertal period with subsequent sperm DNA methylation is unknown.
We examined the association of peripubertal serum 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) concentrations with whole-genome bisulfite sequencing (WGBS) of sperm collected in young adulthood.
The Russian Children's Study is a prospective cohort of 516 boys who were enrolled at 8-9 years of age and provided semen samples at 18-19 years of age. WGBS of sperm was conducted to identify differentially methylated regions (DMR) between highest (n?=?4) and lowest (n?=?4) peripubertal TCDD groups.
We found 52 DMRs that distinguished lowest and highest peripubertal serum TCDD concentrations. One of the top scoring networks, "Cellular Assembly and Organization, Cellular Function and Maintenance, Carbohydrate Metabolism", identified estrogen receptor alpha as its central regulator.
Findings from our limited sample size suggest that peripubertal environmental exposures are associated with sperm DNA methylation in young adults.
Notes
Cites: Biotechniques. 2015 Jun 01;58(6):293-300 PMID 26054765
Cites: J Clin Endocrinol Metab. 1999 Jan;84(1):29-37 PMID 9920058
Cites: Mol Hum Reprod. 2008 Feb;14(2):67-74 PMID 18178607
Cites: Environ Health Perspect. 2011 Sep;119(9):1339-44 PMID 21527364
Cites: Environ Health Perspect. 2017 Mar;125(3):460-466 PMID 27713107
Cites: Genome Biol. 2015 Mar 27;16:59 PMID 25853433
Cites: J Biol Chem. 2005 Jun 3;280(22):21607-11 PMID 15837795
Cites: Toxicology. 2010 Feb 9;268(3):132-8 PMID 19778576
Cites: Cell. 2010 Dec 23;143(7):1084-96 PMID 21183072
Cites: Environ Health Perspect. 2008 Jan;116(1):70-7 PMID 18197302
Cites: J Anat. 1984 Oct;139 ( Pt 3):535-52 PMID 6490534
Cites: Nat Methods. 2012 Mar 04;9(4):357-9 PMID 22388286
Cites: Science. 2016 Jan 22;351(6271):391-396 PMID 26721685
Cites: PLoS One. 2013 Jul 15;8(7):e66318 PMID 23869203
Cites: Hum Mol Genet. 2007 Nov 1;16(21):2542-51 PMID 17636251
Cites: PLoS One. 2012;7(9):e46249 PMID 23049995
Cites: Int J Androl. 2011 Oct;34(5 Pt 1):420-9 PMID 20969598
Cites: Semin Cell Dev Biol. 2014 May;29:2-16 PMID 24685618
Cites: Environ Health Perspect. 2009 Oct;117(10):1593-9 PMID 20019911
Cites: Environ Health Perspect. 2009 Mar;117(3):417-25 PMID 19337517
Cites: Environ Health Perspect. 2013 Jan;121(1):111-7 PMID 23060366
Cites: Genome Res. 2002 Jun;12(6):996-1006 PMID 12045153
Cites: Chemosphere. 2005 Aug;60(7):898-906 PMID 15992596
Cites: Dev Cell. 2014 Jul 14;30(1):11-22 PMID 24998598
Cites: J Clin Endocrinol Metab. 1996 Feb;81(2):571-6 PMID 8636269
Cites: Crit Rev Food Sci Nutr. 2015;55(11):1590-617 PMID 24279584
Cites: Curr Environ Health Rep. 2015 Dec;2(4):356-66 PMID 26362467
Cites: Rev Environ Health. 2017 Mar 1;32(1-2):83-92 PMID 28231067
Cites: Science. 2014 Aug 15;345(6198):1255903 PMID 25011554
Cites: Cell Metab. 2016 Feb 9;23(2):369-78 PMID 26669700
Cites: Genome Biol. 2015 Jan 05;16:22 PMID 25723102
Cites: Dev Cell. 2015 Dec 21;35(6):750-8 PMID 26702833
Cites: Environ Health Perspect. 2011 May;119(5):713-8 PMID 21262597
Cites: Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1873-8 PMID 24449870
Cites: J Clin Endocrinol Metab. 1996 May;81(5):1798-805 PMID 8626838
Cites: J Biol Chem. 2003 Aug 8;278(32):29471-7 PMID 12775710
Cites: Reprod Toxicol. 2017 Apr;69:221-229 PMID 28286111
Cites: Hum Reprod. 2011 Sep;26(9):2558-69 PMID 21685136
Cites: Nature. 2014 Mar 27;507(7493):455-461 PMID 24670763
Cites: Nature. 1997 Dec 4;390(6659):509-12 PMID 9393999
Cites: Nucleic Acids Res. 2004 Jan 1;32(Database issue):D493-6 PMID 14681465
Cites: Philos Trans R Soc Lond B Biol Sci. 2010 May 27;365(1546):1517-35 PMID 20403867
Cites: Endocrinology. 2006 Dec;147(12):5515-23 PMID 16973726
Cites: Toxicol Sci. 2006 Oct;93(2):223-41 PMID 16829543
Cites: Chem Res Toxicol. 2003 Jul;16(7):807-16 PMID 12870882
Cites: Genome Res. 2009 Aug;19(8):1338-49 PMID 19584098
Cites: Nature. 2009 Jul 23;460(7254):473-8 PMID 19525931
Cites: Biol Reprod. 2010 May;82(5):958-67 PMID 20130266
Cites: PLoS One. 2013 Dec 06;8(12):e81148 PMID 24324667
Cites: Nucleic Acids Res. 2015 Jan;43(Database issue):D670-81 PMID 25428374
Cites: Int J Androl. 1983 Apr;6(2):143-56 PMID 6862671
Cites: Dev Cell. 2014 Jul 14;30(1):23-35 PMID 24998597
Cites: PLoS One. 2011;6(6):e20280 PMID 21674046
Cites: Biol Reprod. 2010 May;82(5):948-57 PMID 20130267
Cites: Andrology. 2014 May;2(3):351-9 PMID 24522976
Cites: Endocrinology. 2016 Jul;157(7):2909-19 PMID 27145009
Cites: Mol Cell Endocrinol. 2012 May 15;355(1):49-59 PMID 22306083
Cites: Nature. 2003 May 29;423(6939):545-50 PMID 12774124
Cites: J Reprod Fertil. 1993 Nov;99(2):479-85 PMID 8107030
Cites: Environ Health Perspect. 2016 Nov;124(11):1801-1807 PMID 27187981
Cites: Bioinformatics. 2011 Jun 1;27(11):1571-2 PMID 21493656
Cites: Bioinformatics. 2012 Jul 15;28(14):1919-20 PMID 22576172
Cites: PLoS One. 2010 Sep 30;5(9):null PMID 20927350
Cites: Nat Commun. 2013;4:2889 PMID 24326934
Cites: Reprod Toxicol. 2012 Dec;34(4):694-707 PMID 23041264
PubMed ID
29550351 View in PubMed
Less detail

Prepubertal Serum Concentrations of Organochlorine Pesticides and Age at Sexual Maturity in Russian Boys.

https://arctichealth.org/en/permalink/ahliterature276678
Source
Environ Health Perspect. 2015 Nov;123(11):1216-21
Publication Type
Article
Date
Nov-2015
Author
Thuy Lam
Paige L Williams
Mary M Lee
Susan A Korrick
Linda S Birnbaum
Jane S Burns
Oleg Sergeyev
Boris Revich
Larisa M Altshul
Donald G Patterson
Russ Hauser
Source
Environ Health Perspect. 2015 Nov;123(11):1216-21
Date
Nov-2015
Language
English
Publication Type
Article
Keywords
Adolescent
Age Factors
Child
Dichlorodiphenyl Dichloroethylene - blood
Environmental Exposure - adverse effects
Hexachlorobenzene - blood
Humans
Lindane - blood
Male
Pesticides - blood
Russia - epidemiology
Sexual Maturation
Abstract
Few human studies have evaluated the impact of childhood exposure to organochlorine pesticides (OCP) on pubertal development.
We evaluated associations of serum OCP concentrations [hexachlorobenzene (HCB), ?-hexachlorocyclohexane (?HCH), and p,p-dichlorodiphenyldichloroethylene (p,p?-DDE)] with age at attainment of sexual maturity among boys.
From 2003 through 2005, 350 8- to 9-year-old boys from Chapaevsk, Russia, with measured OCPs were enrolled and followed annually for 8 years. We used multivariable interval-censored models to evaluate associations of OCPs (quartiles) with three physician-assessed measures of sexual maturity: Tanner stage 5 for genitalia growth, Tanner stage 5 for pubic hair growth, or testicular volume (TV) = 20 mL in either testis.
In adjusted models, boys with higher HCB concentrations achieved sexual maturity reflected by TV = 20 mL a mean of 3.1 months (95% CI: -1.7, 7.8), 5.3 months (95% CI: 0.6, 10.1), and 5.0 months (95% CI: 0.2, 9.8) later for quartiles Q2, Q3, and Q4, respectively, compared with Q1 (p trend = 0.04). Tanner stage 5 for genitalia growth was attained a mean of 2.2 months (95% CI: -3.1, 7.5), 5.7 months (95% CI: 0.4, 11.0), and 3.7 months (95% CI: -1.7, 9.1) later for quartiles Q2, Q3, and Q4, respectively, of ?HCH compared with Q1 (p trend = 0.09). Tanner stage 5 for pubic hair growth occurred 6-9 months later on average for boys in the highest versus lowest quartile for HCB (p trend
Notes
Cites: Sci Total Environ. 1999 Oct 1;239(1-3):151-6310636769
Cites: Am J Dis Child. 1989 Feb;143(2):190-32492750
Cites: Environ Health Perspect. 2000 Jun;108 Suppl 3:491-50310852849
Cites: Environ Health Perspect. 2000 Jun;108 Suppl 3:505-910852850
Cites: Int J Androl. 2000 Aug;23(4):248-5310886429
Cites: Am J Clin Nutr. 2000 Aug;72(2 Suppl):521S-8S10919954
Cites: Fertil Steril. 2000 Sep;74(3):558-6310973655
Cites: Hum Reprod Update. 2001 May-Jun;7(3):248-6411392371
Cites: Pediatr Rev. 2001 Sep;22(9):309-1511533380
Cites: Eur J Obstet Gynecol Reprod Biol. 2002 Jan 10;100(2):127-3711750951
Cites: Environ Health Perspect. 2003 Apr;111(4):461-612676599
Cites: Int J Occup Med Environ Health. 2003;16(1):7-2012705713
Cites: Birth Defects Res B Dev Reprod Toxicol. 2003 Apr;68(2):125-3612866704
Cites: J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Aug 25;794(1):137-4812888206
Cites: Anal Chem. 2004 Apr 1;76(7):1921-715053652
Cites: Arch Dis Child. 1976 Mar;51(3):170-9952550
Cites: Toxicol Appl Pharmacol. 1979 Feb;47(2):415-9452032
Cites: Arch Biochem Biophys. 1989 Apr;270(1):344-552539049
Cites: Arch Environ Contam Toxicol. 1989 Jul-Aug;18(4):495-5002505694
Cites: Arch Dis Child. 1990 Nov;65(11):1205-72248529
Cites: J Appl Toxicol. 1993 Mar-Apr;13(2):79-838486915
Cites: Nature. 1995 Jun 15;375(6532):581-57791873
Cites: J Toxicol Environ Health. 1997 May;51(1):23-349169059
Cites: Dev Psychol. 2004 Nov;40(6):1188-9815535766
Cites: Semin Reprod Med. 2004 Nov;22(4):337-4715635501
Cites: Environ Health Perspect. 2005 Jul;113(7):853-716002372
Cites: Sci Total Environ. 2005 Oct 15;349(1-3):1-4416005495
Cites: Lancet. 2007 Mar 31;369(9567):1130-917398312
Cites: Bull World Health Organ. 2007 Sep;85(9):660-718026621
Cites: Horm Behav. 2008 Jan;53(1):249-5318021774
Cites: Pediatrics. 2008 Feb;121 Suppl 3:S172-9118245511
Cites: J Pediatr. 2000 Apr;136(4):490-610753247
Cites: Pediatrics. 2008 Feb;121 Suppl 3:S218-3018245514
Cites: Environ Health Perspect. 2008 Jul;116(7):976-8018629324
Cites: Dermatol Ther. 2008 Sep-Oct;21(5):314-2818844710
Cites: Environ Sci Technol. 2009 Feb 15;43(4):1211-819320182
Cites: Environ Health Perspect. 2009 Oct;117(10):1593-920019911
Cites: Pediatrics. 2010 May;125(5):e1088-9620368318
Cites: Int J Androl. 2010 Apr;33(2):346-5920487042
Cites: J Expo Sci Environ Epidemiol. 2011 May-Jun;21(3):224-3320197795
Cites: Environ Health Perspect. 2012 Feb;120(2):303-821984531
Cites: Environ Health Perspect. 2012 Apr;120(4):A143-422470049
Cites: Reprod Toxicol. 2013 Jul;38:16-2423434729
Cites: J Endocrinol. 2013;218(2):R1-1223709001
Cites: Epidemiology. 2013 Nov;24(6):921-824051893
Cites: Environ Health Perspect. 2013 Nov-Dec;121(11-12):1372-723955839
Cites: Environ Int. 2014 Dec;73:135-4225118086
Cites: Environ Res. 1979 Dec;20(2):225-66121077
Cites: Fundam Appl Toxicol. 1986 May;6(4):697-7122423406
Cites: Pediatrics. 2008 Feb;121 Suppl 3:S208-1718245513
PubMed ID
26009253 View in PubMed
Less detail

Association of blood lead levels with onset of puberty in Russian boys.

https://arctichealth.org/en/permalink/ahliterature156140
Source
Environ Health Perspect. 2008 Jul;116(7):976-80
Publication Type
Article
Date
Jul-2008
Author
Russ Hauser
Oleg Sergeyev
Susan Korrick
Mary M Lee
Boris Revich
Elena Gitin
Jane S Burns
Paige L Williams
Author Affiliation
Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA. rhauser@hohp.harvard.edu
Source
Environ Health Perspect. 2008 Jul;116(7):976-80
Date
Jul-2008
Language
English
Publication Type
Article
Keywords
Body Weights and Measures
Child
Cross-Sectional Studies
Humans
Lead - blood - toxicity
Logistic Models
Male
Puberty - drug effects
Russia - epidemiology
Socioeconomic Factors
Abstract
Epidemiologic studies suggest a temporal trend of earlier onset and longer duration of puberty, raising concerns regarding the potential impact of environmental factors on pubertal development. Lead exposure has been associated with delayed pubertal onset in girls; however, epidemiologic data in boys are limited.
We used multivariable logistic regression models to explore the cross-sectional association of blood lead levels with growth and pubertal onset based on physician-assessed testicular volume (TV) and pubertal staging in 489 boys 8-9 years of age from Chapaevsk, Russia. We used multivariable linear regression models to assess associations of blood lead levels with somatic growth at the study entry visit.
The median (25th-75th percentile) blood lead level was 3 microg/dL (2-5 microg/dL). Height, weight, body mass index, birth weight, and gestational age were predictive of the onset of puberty as assessed either by TV (> 3 mL), genitalia stage (G2), or both. Blood lead level was inversely associated with height (p or = 5 microg/dL had 43% reduced odds of having entered G2 compared with those with lower levels (odds ratio = 0.57; 95% confidence interval, 0.34-0.95, p = 0.03).
Relatively low environmental blood lead levels were associated with decreased growth and differences in pubertal onset in periadolescent Russian boys. Future analyses of this prospective cohort will address pubertal onset and progression in relation to lead and other environmental chemicals.
Notes
Cites: J Toxicol Environ Health A. 1998 May 22;54(2):77-999652546
Cites: Arch Environ Health. 1997 Sep-Oct;52(5):377-839546761
Cites: Vopr Pitan. 1998;(3):8-139752664
Cites: J Expo Anal Environ Epidemiol. 1993;3 Suppl 1:201-99857305
Cites: Environ Health. 2005;4(1):815918907
Cites: Endocrinol Metab Clin North Am. 2005 Sep;34(3):617-41, ix16085163
Cites: Mol Cell Endocrinol. 2006 Jul 25;254-255:22-516757105
Cites: Neurotoxicology. 2007 Mar;28(2):245-5116806481
Cites: J Pediatr. 1999 May;134(5):623-3010228299
Cites: Am J Epidemiol. 1999 Oct 1;150(7):747-5510512428
Cites: Eur J Clin Nutr. 2000 Mar;54(3):203-810713741
Cites: Arch Pediatr Adolesc Med. 2001 Sep;155(9):1022-811529804
Cites: Gig Sanit. 2001 Nov-Dec;(6):6-1111810913
Cites: J Adolesc Health. 2002 Mar;30(3):205-1211869928
Cites: Environ Health Perspect. 2002 Jun;110(6):559-6212055045
Cites: Horm Res. 2002;57 Suppl 2:19-3012065922
Cites: Environ Health Perspect. 2002 Sep;110(9):871-412204820
Cites: Pediatrics. 2002 Nov;110(5):911-912415029
Cites: Pediatrics. 2003 Apr;111(4 Pt 1):844-5012671122
Cites: N Engl J Med. 2003 Apr 17;348(16):1527-3612700372
Cites: J Pediatr Endocrinol Metab. 2003 Feb;16(2):169-7812713253
Cites: Environ Health Perspect. 2003 May;111(5):737-4112727603
Cites: Adv Data. 2003 Apr 17;(334):1-412743879
Cites: Arch Dis Child. 1970 Feb;45(239):13-235440182
Cites: Biol Reprod. 1985 Oct;33(3):722-83931714
Cites: Pediatrics. 1986 Mar;77(3):281-83951909
Cites: Environ Res. 1987 Apr;42(2):524-333106028
Cites: Biol Reprod. 1987 Dec;37(5):1135-83327539
Cites: Pediatrics. 1992 Aug;90(2 Pt 1):186-91641279
Cites: Toxicol Appl Pharmacol. 1995 Apr;131(2):297-3087716770
Cites: Toxicol Appl Pharmacol. 1996 Feb;136(2):361-718619245
Cites: Acta Paediatr. 1996 Jul;85(7):785-88819542
Cites: Pediatrics. 1997 Apr;99(4):505-129093289
Cites: Am J Clin Nutr. 1997 Apr;65(4 Suppl):1220S-1228S; discussion 1229S-1231S9094926
Cites: J Toxicol Environ Health A. 1998 May 22;54(2):101-209652547
PubMed ID
18629324 View in PubMed
Less detail

A Longitudinal Study of Peripubertal Serum Organochlorine Concentrations and Semen Parameters in Young Men: The Russian Children's Study.

https://arctichealth.org/en/permalink/ahliterature286153
Source
Environ Health Perspect. 2017 Mar;125(3):460-466
Publication Type
Article
Date
Mar-2017
Author
Lidia Mínguez-Alarcón
Oleg Sergeyev
Jane S Burns
Paige L Williams
Mary M Lee
Susan A Korrick
Luidmila Smigulina
Boris Revich
Russ Hauser
Source
Environ Health Perspect. 2017 Mar;125(3):460-466
Date
Mar-2017
Language
English
Publication Type
Article
Keywords
Adolescent
Environmental Exposure - statistics & numerical data
Environmental pollutants - blood
Humans
Hydrocarbons, Chlorinated - blood
Longitudinal Studies
Male
Russia - epidemiology
Semen - physiology
Young Adult
Abstract
Exposures to endocrine-disrupting chemicals during critical phases of testicular development may be related to poorer semen parameters. However, few studies have assessed the association between childhood organochlorine (OC) exposure and adult semen parameters.
We examined whether peripubertal serum OC concentrations are associated with semen parameters among young Russian men.
From 2003 through 2005, 516 boys were enrolled at age 8-9 years and followed for up to 10 years. Serum OCs were measured in the enrollment samples using high-resolution mass spectrometry. At 18-19 years, 133 young men provided 1 or 2 semen samples (256 samples) collected approximately 1 week apart, which were analyzed for volume, sperm concentration, and motility. Unadjusted and adjusted linear mixed models were used to examine the associations of quartiles of lipid-standardized concentrations of dioxins [2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), polychlorinated dibenzo-p-dioxins (PCDDs)], furans, polychlorinated biphenyls (PCBs), and corresponding toxic equivalents (TEQs) with semen parameters.
The median (range) for TCDD was 2.9 (0.4-12.1) pg/g lipid and PCDD TEQ was 8.7 (1.0-36.0) pg TEQ/g lipid. Higher quartiles of TCDD and PCDD TEQs were associated with lower sperm concentration, total sperm count, and total motile sperm count (p-trends = 0.05). The highest quartile of peripubertal serum TCDD concentrations was associated with a decrease (95% CI) of 40% (18, 66%), 29% (3, 64%), and 30% (2, 70%) in sperm concentration, total sperm count, and total motile sperm count, respectively, compared with the lowest quartile. Similar associations were observed for serum PCDD TEQs with semen parameters. Serum PCBs, furans, and total TEQs were not associated with semen parameters.
Higher peripubertal serum TCDD concentrations and PCDD TEQs were associated with poorer semen parameters. Citation: M?nguez-Alarc?n L, Sergeyev O, Burns JS, Williams PL, Lee MM, Korrick SA, Smigulina L, Revich B, Hauser R. 2017. A longitudinal study of peripubertal serum organochlorine concentrations and semen parameters in young men: the Russian Children's Study. Environ Health Perspect 125:460-466; http://dx.doi.org/10.1289/EHP25.
Notes
Cites: Toxicol Appl Pharmacol. 1998 Jun;150(2):383-929653070
Cites: Arch Environ Contam Toxicol. 1989 Jul-Aug;18(4):495-5002505694
Cites: Environ Health Perspect. 2011 Sep;119(9):1339-4421527364
Cites: Epidemiology. 2009 Jul;20(4):488-9519525685
Cites: Environ Health Perspect. 2008 Jan;116(1):70-718197302
Cites: Best Pract Res Clin Endocrinol Metab. 2006 Mar;20(1):91-11016522522
Cites: Chemosphere. 2008 Oct;73(6):999-100418707752
Cites: Environ Health Perspect. 2003 Apr;111(4):414-2012676592
Cites: Environ Health Perspect. 2009 Oct;117(10 ):1593-920019911
Cites: Anal Chem. 1987 Aug 1;59(15):2000-53631519
Cites: Chemosphere. 2005 Aug;60(7):898-90615992596
Cites: Syst Biol Reprod Med. 2010 Apr;56(2):122-3120377311
Cites: Endocrinology. 2003 Mar;144(3):767-7612586752
Cites: BMJ. 1992 Sep 12;305(6854):609-131393072
Cites: J Endocrinol Invest. 2015 Jul;38(7):745-5225770454
Cites: Environ Health Perspect. 2000 Oct;108(10):961-611049816
Cites: Pediatrics. 2011 Jan;127(1):e59-6821187307
Cites: Chemosphere. 2005 Mar;58(9):1185-20115667840
Cites: Environ Health Perspect. 2011 May;119(5):713-821262597
Cites: Epidemiology. 2006 Jul;17(4):450-816755259
Cites: Pediatrics. 2010 May;125(5):e1088-9620368318
Cites: Hum Reprod. 2001 May;16(5):1012-911331653
Cites: Anal Chem. 2004 Apr 1;76(7):1921-715053652
Cites: Andrologia. 2013 Aug;45(4):225-3122762285
Cites: Horm Res. 2002;57 Suppl 2:2-1412065920
Cites: J Pediatr. 1999 May;134(5):579-8310228293
Cites: Environ Health Perspect. 2008 Jul;116(7):976-8018629324
Cites: Toxicol Sci. 2006 Oct;93(2):223-4116829543
Cites: Drug Chem Toxicol. 2011 Oct;34(4):347-5621714773
Cites: J Biomed Biotechnol. 2010;2010:null20862379
Cites: Toxicol Appl Pharmacol. 1998 Jun;150(2):427-429653074
Cites: Chemosphere. 2008 Aug;73(1 Suppl):S261-7718511103
Cites: Andrologia. 2014 Sep;46(7):744-5223879235
Cites: J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Aug 25;794(1):137-4812888206
Cites: Hum Reprod. 2002 Aug;17(8):2199-20812151459
Cites: Reproduction. 2003 Jun;125(6):769-8412773099
Cites: J Toxicol Environ Health A. 2001 May 11;63(1):1-1811346131
Cites: Environ Health Perspect. 2016 Nov;124(11):1801-180727187981
Cites: Reprod Toxicol. 2009 Dec;28(4):495-50219703549
PubMed ID
27713107 View in PubMed
Less detail

Blood lead levels and serum insulin-like growth factor 1 concentrations in peripubertal boys.

https://arctichealth.org/en/permalink/ahliterature114274
Source
Environ Health Perspect. 2013 Jul;121(7):854-8
Publication Type
Article
Date
Jul-2013
Author
Abby F Fleisch
Jane S Burns
Paige L Williams
Mary M Lee
Oleg Sergeyev
Susan A Korrick
Russ Hauser
Author Affiliation
Department of Endocrinology, Children's Hospital Boston, Boston, Massachusetts, USA.
Source
Environ Health Perspect. 2013 Jul;121(7):854-8
Date
Jul-2013
Language
English
Publication Type
Article
Keywords
Child
Cohort Studies
Dose-Response Relationship, Drug
Environmental Exposure
Environmental pollutants - blood
Humans
Insulin-Like Growth Factor I - metabolism
Lead - blood
Linear Models
Luminescence
Luminescent Measurements
Male
Russia
Spectrophotometry, Atomic
Abstract
Childhood lead exposure has been associated with growth delay. However, the association between blood lead levels (BLLs) and insulin-like growth factor 1 (IGF-1) has not been characterized in a large cohort with low-level lead exposure.
We recruited 394 boys 8-9 years of age from an industrial Russian town in 2003-2005 and followed them annually thereafter. We used linear regression models to estimate the association of baseline BLLs with serum IGF-1 concentration at two follow-up visits (ages 10-11 and 12-13 years), adjusting for demographic and socioeconomic covariates.
At study entry, median BLL was 3 µg/dL (range,
Notes
Cites: Life Sci. 1984 Oct 22;35(17):1747-546090848
Cites: Pediatrics. 1986 Mar;77(3):281-83951909
Cites: Clin Endocrinol (Oxf). 1986 Jul;25(1):67-743791658
Cites: Toxicol Appl Pharmacol. 1989 Jul;99(3):474-862749734
Cites: Toxicol Appl Pharmacol. 1990 Oct;106(1):80-72123580
Cites: Toxicology. 1991;68(2):169-791654001
Cites: Pediatrics. 1991 Nov;88(5):886-921945627
Cites: Neuroendocrinology. 1991 Oct;54(4):420-31758585
Cites: Pediatrics. 1992 Aug;90(2 Pt 1):186-91641279
Cites: Pediatrics. 1992 Dec;90(6):855-611437425
Cites: Toxicology. 1993 Oct 25;83(1-3):101-148248939
Cites: Arch Environ Health. 2001 Sep-Oct;56(5):449-5511777027
Cites: Environ Health Perspect. 2012 Jul;120(7):a26822759595
Cites: N Engl J Med. 2003 Apr 17;348(16):1527-3612700372
Cites: Am J Pathol. 1967 May;50(5):815-476023504
Cites: J Biol Chem. 1983 Jul 25;258(14):8618-226408091
Cites: Biol Reprod. 1994 Apr;50(4):802-118199261
Cites: Endocrinology. 1996 Sep;137(9):3717-288756538
Cites: Toxicol Appl Pharmacol. 1996 Sep;140(1):164-728806882
Cites: Mol Endocrinol. 1997 Jul;11(8):1145-559212061
Cites: Prev Med. 1997 Nov-Dec;26(6):808-169388792
Cites: Arch Environ Health. 1997 Sep-Oct;52(5):377-839546761
Cites: Circulation. 2006 Sep 26;114(13):1388-9416982939
Cites: Ann Hum Biol. 2009 May-Jun;36(3):331-4119381987
Cites: Pediatrics. 2010 May;125(5):e1088-9620368318
Cites: J Clin Invest. 2010 Aug;120(8):2900-920628204
Cites: Sci Total Environ. 2010 Oct 1;408(21):4949-5420692685
Cites: Environ Health Perspect. 2012 Feb;120(2):303-821984531
Cites: J Pediatr. 2012 Jun;160(6):1044-922284921
Cites: Endocr Rev. 2012 Jun;33(3):378-45522419778
Cites: Infertility. 1978;1(1):33-5112265605
Cites: Reprod Toxicol. 1998 May-Jun;12(3):347-559628557
Cites: J Toxicol Environ Health A. 1998 May 22;54(2):77-999652546
Cites: J Toxicol Environ Health A. 1998 May 22;54(2):101-209652547
Cites: Vopr Pitan. 1998;(3):8-139752664
Cites: J Pediatr. 1999 May;134(5):623-3010228299
Cites: Environ Health. 2005;4(1):515831097
Cites: Environ Health Perspect. 2005 Jul;113(7):894-916002379
Cites: Neurotoxicol Teratol. 2005 Jul-Aug;27(4):655-6515919179
Cites: Reprod Toxicol. 2006 Jan;21(1):104-916153799
PubMed ID
23632160 View in PubMed
Less detail

Urinary and breast milk biomarkers to assess exposure to naphthalene in pregnant women: an investigation of personal and indoor air sources.

https://arctichealth.org/en/permalink/ahliterature257184
Source
Environ Health. 2014;13(1):30
Publication Type
Article
Date
2014
Author
Amanda J Wheeler
Nina A Dobbin
Marie-Eve Héroux
Mandy Fisher
Liu Sun
Cheryl F Khoury
Russ Hauser
Mark Walker
Tim Ramsay
Jean-François Bienvenu
Alain LeBlanc
Eric Daigle
Eric Gaudreau
Patrick Belanger
Mark Feeley
Pierre Ayotte
Tye E Arbuckle
Author Affiliation
Water and Air Quality Bureau, HECSB, Health Canada, 269 Laurier Avenue West, AL 4903C, Ottawa, ON K1A 0K9, Canada. A.Wheeler@ecu.edu.au.
Source
Environ Health. 2014;13(1):30
Date
2014
Language
English
Publication Type
Article
Keywords
Adult
Air Pollutants - analysis
Air Pollution, Indoor - analysis
Biological Markers - analysis - urine
Environmental monitoring
Female
Housing
Humans
Maternal Exposure
Milk, human - chemistry
Naphthalenes - analysis
Naphthols - urine
Ontario
Pregnancy - urine
Abstract
Naphthalene exposures for most non-occupationally exposed individuals occur primarily indoors at home. Residential indoor sources include pest control products (specifically moth balls), incomplete combustion such as cigarette smoke, woodstoves and cooking, some consumer and building products, and emissions from gasoline sources found in attached garages. The study aim was to assess naphthalene exposure in pregnant women from Canada, using air measurements and biomarkers of exposure.
Pregnant women residing in Ottawa, Ontario completed personal and indoor air sampling, and questionnaires. During pregnancy, pooled urine voids were collected over two 24-hour periods on a weekday and a weekend day. At 2-3 months post-birth, they provided a spot urine sample and a breast milk sample following the 24-hour air monitoring. Urines were analyzed for 1-naphthol and 2-naphthol and breast milk for naphthalene. Simple linear regression models examined associations between known naphthalene sources, air and biomarker samples.
Study recruitment rate was 11.2% resulting in 80 eligible women being included. Weekday and weekend samples were highly correlated for both personal (r?=?0.83, p?
Notes
Cites: J Pediatr. 1963 Nov;63:904-1514071045
Cites: Analyst. 1994 May;119(5):1037-428067533
Cites: J Perinatol. 2004 Dec;24(12):792-315558002
Cites: Environ Sci Technol. 2005 Jun 1;39(11):3964-7115984771
Cites: Drug Metab Dispos. 2006 Jan;34(1):176-8316243959
Cites: Chemosphere. 2007 Apr;67(7):1265-7417258279
Cites: J Expo Sci Environ Epidemiol. 2007 Jul;17(4):314-2016721410
Cites: Regul Toxicol Pharmacol. 2008 Jul;51(2 Suppl):S15-2118078699
Cites: Regul Toxicol Pharmacol. 2008 Jul;51(2 Suppl):S27-3618191315
Cites: Basic Clin Pharmacol Toxicol. 2008 Aug;103(2):131-618816295
Cites: Carcinogenesis. 2009 Feb;30(2):286-9419126640
Cites: J Toxicol Environ Health A. 2009;72(23):1534-4920077227
Cites: Sci Total Environ. 2010 Jun 15;408(14):2840-920417546
Cites: Environ Health Perspect. 2010 Jun;118(6):856-6320129873
Cites: Int J Environ Res Public Health. 2010 Jul;7(7):2903-3920717549
Cites: Int Arch Occup Environ Health. 1995;67(3):211-77591181
Cites: J Pediatr. 1997 Apr;130(4):680-19108877
Cites: Pediatrics. 1951 Feb;7(2):172-414827617
Cites: Environ Pollut. 2005 Jan;133(2):383-715519469
Cites: AMA J Dis Child. 1957 Jul;94(1):77-913434623
Cites: J Expo Sci Environ Epidemiol. 2010 Nov;20(7):625-3320354564
Cites: Indoor Air. 2010 Dec;20(6):515-2221070376
Cites: Environ Int. 2011 Jan;37(1):142-5120828823
Cites: Sci Total Environ. 2011 Jan 1;409(3):478-8821112612
Cites: Med J Aust. 2011 Feb 7;194(3):15021299493
Cites: J Environ Monit. 2010 May;12(5):1110-1821491629
Cites: Environ Int. 2011 Oct;37(7):1157-6321524795
Cites: J Chromatogr B Analyt Technol Biomed Life Sci. 2012 Jan 1;880(1):66-7322130501
Cites: Environ Int. 2012 Apr;40:63-922280929
Cites: Cancer Epidemiol Biomarkers Prev. 2012 Jul;21(7):1191-20222573794
Cites: Indoor Air. 2012 Aug;22(4):266-7822145682
Cites: Acad Emerg Med. 2000 Jan;7(1):42-710894241
Cites: Indoor Air. 2001 Mar;11(1):49-6411235231
Cites: J Environ Monit. 2000 Aug;2(4):313-2411249785
Cites: Environ Sci Technol. 2002 Mar 1;36(5):846-5311918006
Cites: Environ Sci Technol. 2002 Mar 15;36(6):1169-8011944666
Cites: IARC Monogr Eval Carcinog Risks Hum. 2002;82:1-55612687954
Cites: Int Arch Occup Environ Health. 2003 Oct;76(8):556-7612920524
Cites: Environ Health Perspect. 2003 Nov;111(14):1779-8214594631
Cites: Int Arch Occup Environ Health. 2004 Jan;77(1):23-3014564527
Cites: Med J Aust. 1966 Dec 24;2(26):1229-305958771
Cites: MMWR Morb Mortal Wkly Rep. 1983 Jan 21;32(2):34-56402657
Cites: Can Med Assoc J. 1964 Dec 12;91:1243-914226101
PubMed ID
24767676 View in PubMed
Less detail

Dioxin exposure and age of pubertal onset among Russian boys.

https://arctichealth.org/en/permalink/ahliterature134923
Source
Environ Health Perspect. 2011 Sep;119(9):1339-44
Publication Type
Article
Date
Sep-2011
Author
Susan A Korrick
Mary M Lee
Paige L Williams
Oleg Sergeyev
Jane S Burns
Donald G Patterson
Wayman E Turner
Larry L Needham
Larisa Altshul
Boris Revich
Russ Hauser
Author Affiliation
Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA. susan.korrick@channing.harvard.edu
Source
Environ Health Perspect. 2011 Sep;119(9):1339-44
Date
Sep-2011
Language
English
Publication Type
Article
Keywords
Child
Cohort Studies
Confidence Intervals
Dioxins - blood - toxicity
Environmental Pollutants - blood - toxicity
Furans - blood - toxicity
Humans
Logistic Models
Male
Polychlorinated Biphenyls - blood - toxicity
Proportional Hazards Models
Prospective Studies
Puberty - drug effects
Questionnaires
Russia - epidemiology
Sensitivity and specificity
Statistics, nonparametric
Abstract
Animal data demonstrate associations of dioxin, furan, and polychlorinated biphenyl (PCB) exposures with altered male gonadal maturation. It is unclear whether these associations apply to human populations.
We investigated the association of dioxins, furans, PCBs, and corresponding toxic equivalent (TEQ) concentrations with pubertal onset among boys in a dioxin-contaminated region.
Between 2003 and 2005, 499 boys 8-9 years of age were enrolled in a longitudinal study in Chapaevsk, Russia. Pubertal onset [stage 2 or higher for genitalia (G2+) or testicular volume (TV) > 3 mL] was assessed annually between ages 8 and 12 years. Serum levels at enrollment were analyzed by the Centers for Disease Control and Prevention, Atlanta, Georgia, USA. We used Cox proportional hazards models to assess age at pubertal onset as a function of exposure adjusted for potential confounders. We conducted sensitivity analyses excluding boys with pubertal onset at enrollment.
The median (range) total serum TEQ concentration was 21 (4-175) pg/g lipid, approximately three times higher than values in European children. At enrollment, boys were generally healthy and normal weight (mean body mass index, 15.9 kg/m2), with 30% having entered puberty by G2+ and 14% by TV criteria. Higher dioxin TEQs were associated with later pubertal onset by TV (hazard ratio = 0.68, 95% confidence interval, 0.49-0.95 for the highest compared with the lowest quartile). Similar associations were observed for 2,3,7,8-tetrachlorodibenzo-p-dioxin and dioxin concentrations for TV but not G2+. Results were robust to sensitivity analyses.
Findings support an association of higher peripubertal serum dioxin TEQs and concentrations with later male pubertal onset reflected in delayed testicular maturation.
Notes
Cites: Environ Health Perspect. 2003 May;111(5):737-4112727603
Cites: J Clin Endocrinol Metab. 2010 Jan;95(1):263-7019926714
Cites: J Pediatr. 2003 Jun;142(6):643-612838192
Cites: J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Aug 25;794(1):137-4812888206
Cites: Anal Chem. 2004 Apr 1;76(7):1921-715053652
Cites: J Am Acad Child Adolesc Psychiatry. 2004 Jun;43(6):718-2615167088
Cites: Mol Cell Endocrinol. 2004 Jun 30;221(1-2):87-9615223135
Cites: Arch Dis Child. 1976 Mar;51(3):170-9952550
Cites: Anal Chem. 1987 Aug 1;59(15):2000-53631519
Cites: Arch Environ Contam Toxicol. 1989 Jul-Aug;18(4):495-5002505694
Cites: J Pediatr. 1995 Jul;127(1):100-27608791
Cites: Arch Pediatr Adolesc Med. 2010 Feb;164(2):166-7320124146
Cites: Pediatrics. 2010 May;125(5):e1088-9620368318
Cites: Int J Androl. 2010 Apr;33(2):279-8720002220
Cites: Pediatrics. 2010 Sep;126(3):e583-9020696727
Cites: J Expo Sci Environ Epidemiol. 2011 May-Jun;21(3):224-3320197795
Cites: Am J Clin Nutr. 1996 Jul;64(1):18-248669409
Cites: J Clin Endocrinol Metab. 1996 Oct;81(10):3812-38855844
Cites: Pediatrics. 1997 Apr;99(4):505-129093289
Cites: Vopr Pitan. 1998;(3):8-139752664
Cites: J Steroid Biochem Mol Biol. 1998 Nov;67(4):347-549883992
Cites: J Pediatr. 2000 Apr;136(4):490-610753247
Cites: Int J Androl. 2000 Aug;23(4):248-5310886429
Cites: J Toxicol Environ Health A. 2001 May 11;63(1):1-1811346131
Cites: Arch Pediatr Adolesc Med. 2001 Sep;155(9):1022-811529804
Cites: Environ Health Perspect. 2002 Aug;110(8):771-612153757
Cites: N Engl J Med. 2003 Apr 17;348(16):1527-3612700372
Cites: Comp Biochem Physiol C Toxicol Pharmacol. 2004 Jul;138(3):375-8115533795
Cites: Chemosphere. 2005 Mar;58(9):1185-20115667840
Cites: J Toxicol Environ Health A. 2005 Sep;68(17-18):1447-5616076757
Cites: J Adolesc Health. 2005 Nov;37(5):345-5516227118
Cites: Mol Cell Endocrinol. 2006 Jul 25;254-255:172-816806671
Cites: Toxicol Sci. 2006 Oct;93(2):223-4116829543
Cites: Eur J Endocrinol. 2007 Jan;156(1):105-1117218732
Cites: J Epidemiol Community Health. 2007 Jul;61(7):564-517568044
Cites: Toxicol Sci. 2007 Sep;99(1):224-3317545211
Cites: Bull World Health Organ. 2007 Sep;85(9):660-718026621
Cites: Basic Clin Pharmacol Toxicol. 2008 Feb;102(2):168-7518226071
Cites: Pediatrics. 2008 Feb;121 Suppl 3:S172-9118245511
Cites: J Endocrinol. 2008 May;197(2):351-818434365
Cites: Environ Health Perspect. 2008 Jul;116(7):976-8018629324
Cites: Chemosphere. 2008 Oct;73(6):999-100418707752
Cites: Curr Opin Endocrinol Diabetes Obes. 2009 Feb;16(1):25-3019115521
Cites: Reprod Toxicol. 2009 Jul;28(1):38-4519490993
Cites: Environ Health Perspect. 2009 Oct;117(10):1593-920019911
Cites: Toxicol Sci. 2003 Jul;74(1):182-9112730615
PubMed ID
21527364 View in PubMed
Less detail

Predictors of serum dioxins and PCBs among peripubertal Russian boys.

https://arctichealth.org/en/permalink/ahliterature146616
Source
Environ Health Perspect. 2009 Oct;117(10):1593-9
Publication Type
Article
Date
Oct-2009
Author
Jane S Burns
Paige L Williams
Oleg Sergeyev
Susan Korrick
Mary M Lee
Boris Revich
Larisa Altshul
Donald G Patterson
Wayman E Turner
Larry L Needham
Igor Saharov
Russ Hauser
Author Affiliation
Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA. jburns@hsph.harvard.edu
Source
Environ Health Perspect. 2009 Oct;117(10):1593-9
Date
Oct-2009
Language
English
Publication Type
Article
Keywords
Benzofurans - blood
Child
Dioxins - blood
Environmental pollutants - blood
Humans
Linear Models
Male
Polychlorinated biphenyls - blood
Puberty
Risk factors
Russia
Tetrachlorodibenzodioxin - analogs & derivatives - blood
Abstract
Although sources and routes of exposure to dioxins and polychlorinated biphenyls (PCBs) have been studied, information regarding exposure among children is limited. Breast-feeding and diet are two important contributors to early life exposure. To further understand other significant contributors to childhood exposure, we studied a cohort of children from a city with high environmental dioxin levels.
We investigated predictors of serum concentrations of polychlorinated dibenzo-p-dioxins (PCDDs)/polychlorinated dibenzofurans (PCDFs)/co-planar PCBs (C-PCBs), toxic equivalents (TEQs), and PCBs among 8- to 9-year-old boys in Chapaevsk, Russia.
We used general linear regression models to explore associations of log(10)-transformed serum concentrations of PCDDs/PCDFs/C-PCBs, TEQs, and PCBs at study entry with anthropometric, demographic, geographic, and dietary factors in 482 boys in Chapaevsk, Russia.
The median (25th, 75th percentile) concentration for total 2005 TEQs was 21.1 pg/g lipid (14.4, 33.2). Boys who were older, consumed local foods, were breast-fed longer, and whose mothers were employed at the Khimprom chemical plant (where chlorinated chemicals were produced) or gardened locally had significantly higher serum dioxins and PCBs, whereas boys with higher body mass index or more educated parents had significantly lower serum dioxins and PCBs. Boys who lived 5 km away (adjusted mean = 18.8; 95% CI, 17.2-20.6).
Our findings suggest that there are specific local sources of dioxin and PCB exposure among children in Chapaevsk including maternal gardening, consumption of locally grown food, and residential proximity to the Khimprom plant.
Notes
Cites: J Toxicol Environ Health. 1996 Feb 23;47(3):209-208604146
Cites: Environ Int. 2009 Jan;35(1):9-1318602159
Cites: Arch Toxicol. 1997;71(6):383-4009195020
Cites: Prev Med. 1997 Nov-Dec;26(6):808-169388792
Cites: Environ Health Perspect. 1998 May;106(5):273-79520360
Cites: Vopr Pitan. 1998;(3):8-139752664
Cites: Environ Health Perspect. 1999 Jan;107(1):45-519872716
Cites: J Natl Cancer Inst. 1999 May 5;91(9):779-8610328108
Cites: Chemosphere. 2005 Mar;58(9):1185-20115667840
Cites: Food Addit Contam. 2004 Oct;21(10):983-9115712523
Cites: Food Chem Toxicol. 2005 May;43(5):671-915778006
Cites: Chemosphere. 2005 Aug;60(7):898-90615992596
Cites: Environ Health. 2005;4(1):815918907
Cites: Environ Res. 2005 Nov;99(3):307-1316307972
Cites: Environ Health Perspect. 2006 Jul;114(7):1092-816835064
Cites: Chemosphere. 2006 Oct;65(3):410-816530805
Cites: Toxicol Sci. 2006 Oct;93(2):223-4116829543
Cites: Mol Nutr Food Res. 2006 Oct;50(10):908-1416676378
Cites: Mol Nutr Food Res. 2006 Oct;50(10):922-3317009213
Cites: Environ Health Perspect. 2006 Oct;114(10):1596-60217035149
Cites: Chemosphere. 2007 Jan;66(6):1079-8516919309
Cites: Epidemiology. 2000 Jan;11(1):44-810615842
Cites: BMJ. 2000 May 6;320(7244):1240-310797032
Cites: J Occup Environ Med. 2000 Sep;42(9):861-7010998761
Cites: J Toxicol Environ Health A. 2001 May 11;63(1):1-1811346131
Cites: Chemosphere. 2001 May-Jun;43(4-7):951-6611372889
Cites: Rev Environ Health. 2002 Apr-Jun;17(2):123-3412222738
Cites: J Expo Anal Environ Epidemiol. 2002 Nov;12(6):409-1712415489
Cites: J Pediatr Endocrinol Metab. 2003 Feb;16(2):169-7812713253
Cites: J Occup Environ Med. 2003 Aug;45(8):781-812915779
Cites: Anal Chem. 1987 Aug 1;59(15):2000-53631519
Cites: Arch Environ Contam Toxicol. 1989 Jul-Aug;18(4):495-5002505694
Cites: Chemosphere. 2007 Apr;67(9):S272-817207842
Cites: Chemosphere. 2007 Apr;67(9):S393-817222440
Cites: BMJ. 2007 Jul 28;335(7612):19417591624
Cites: Environ Health Perspect. 2007 Dec;115(12):1780-618087600
Cites: Environ Health Perspect. 2008 Jan;116(1):70-718197302
Cites: J Occup Environ Med. 2008 Mar;50(3):330-4018332783
Cites: Am J Epidemiol. 2008 Apr 1;167(7):847-5818192277
Cites: J Toxicol Environ Health B Crit Rev. 2008 May;11(5-6):373-51718470797
Cites: Environ Res. 2008 Jul;107(3):393-40018479682
Cites: Environ Health Perspect. 2008 Jun;116(6):761-818560532
Cites: Diabetes Care. 2008 Aug;31(8):1574-918487481
Cites: PLoS Med. 2008 Jul 29;5(7):e16118666825
Cites: Chemosphere. 2008 Aug;73(1 Suppl):S261-7718511103
Cites: Environ Health Perspect. 2008 Nov;116(11):1443-819057694
Cites: Pediatr Res. 1996 Nov;40(5):671-98910931
PubMed ID
20019911 View in PubMed
Less detail

Peripubertal blood lead levels and growth among Russian boys.

https://arctichealth.org/en/permalink/ahliterature289798
Source
Environ Int. 2017 09; 106:53-59
Publication Type
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Date
09-2017
Author
Jane S Burns
Paige L Williams
Mary M Lee
Boris Revich
Oleg Sergeyev
Russ Hauser
Susan A Korrick
Author Affiliation
Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA. Electronic address: jburns@hsph.harvard.edu.
Source
Environ Int. 2017 09; 106:53-59
Date
09-2017
Language
English
Publication Type
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Keywords
Adolescent
Body Height
Body mass index
Body Weight
Child
Cohort Studies
Environmental pollutants - blood
Humans
Lead - blood
Male
Puberty
Russia
Abstract
Childhood blood lead levels (BLL) have been associated with growth impairment.
We assessed associations of peripubertal BLL with adolescent growth and near adult height in a longitudinal cohort of Russian boys.
481 boys were enrolled at ages 8-9years and followed annually to age 18. At enrollment, BLL was measured, and height, weight, and pubertal staging were obtained annually during 10years of follow-up. Mixed effects models were used to assess the associations of BLL with longitudinal age-adjusted World Health OrganizationZ-scores for height (HT-Z) and body mass index (BMI-Z), and annual height velocity (HV). Interactions between boys' age and BLL on growth outcomes were evaluated.
The median (range) BLL was 3.0 (0.5-31.0) µg/dL. At age 18years, 79% of boys had achieved near adult height (HV
Notes
Cites: Environ Health. 2015 Dec 30;14:95 PMID 26715556
Cites: J Pediatr. 1999 May;134(5):623-30 PMID 10228299
Cites: Environ Health Perspect. 2013 Jul;121(7):854-8 PMID 23632160
Cites: J Child Psychol Psychiatry. 2016 Jul;57(7):775-93 PMID 26987761
Cites: Vopr Pitan. 1998;(3):8-13 PMID 9752664
Cites: Environ Health Perspect. 2003 May;111(5):737-41 PMID 12727603
Cites: Arch Environ Health. 1997 Sep-Oct;52(5):377-83 PMID 9546761
Cites: Toxicology. 1993 Oct 25;83(1-3):101-14 PMID 8248939
Cites: Environ Sci Pollut Res Int. 2013 Jul;20(7):4441-7 PMID 23247522
Cites: MMWR Morb Mortal Wkly Rep. 2015 Oct 23;62(54):76-80 PMID 26505220
Cites: Environ Res. 2017 Jan;152:226-232 PMID 27810680
Cites: Environ Int. 2010 May;36(4):330-7 PMID 20181395
Cites: N Engl J Med. 2003 Apr 17;348(16):1527-36 PMID 12700372
Cites: Int J Hyg Environ Health. 2008 Mar;211(1-2):82-7 PMID 17588495
Cites: Bull World Health Organ. 2007 Sep;85(9):660-7 PMID 18026621
Cites: Int J Environ Res Public Health. 2011 Jul;8(7):2593-628 PMID 21845148
Cites: Toxicol Appl Pharmacol. 1996 Sep;140(1):164-72 PMID 8806882
Cites: Pediatrics. 2014 Dec;134(6):1151-9 PMID 25422017
Cites: Toxicol Appl Pharmacol. 2013 Dec 15;273(3):516-23 PMID 24099784
Cites: Ann Hum Biol. 2009 May-Jun;36(3):331-41 PMID 19381987
Cites: J Toxicol Environ Health A. 1998 May 22;54(2):101-20 PMID 9652547
Cites: Environ Health Perspect. 1991 Feb;91:17-32 PMID 2040247
Cites: PLoS Med. 2008 May 27;5(5):e101 PMID 18507497
Cites: Prev Med. 1997 Nov-Dec;26(6):808-16 PMID 9388792
Cites: Pediatrics. 2010 May;125(5):e1088-96 PMID 20368318
Cites: J Pediatr Endocrinol Metab. 2003 Feb;16(2):169-78 PMID 12713253
Cites: Environ Res. 2014 Oct;134:17-23 PMID 25042032
Cites: J Environ Public Health. 2016;2016:8791686 PMID 27042184
Cites: Environ Health Perspect. 2011 Oct;119(10):1436-41 PMID 21715242
Cites: Am J Public Health. 2016 Feb;106(2):283-90 PMID 26691115
Cites: Biol Trace Elem Res. 2016 May;171(1):41-7 PMID 26358768
Cites: Pediatrics. 1991 Nov;88(5):886-92 PMID 1945627
Cites: Environ Health. 2005 May 26;4(1):8 PMID 15918907
Cites: Environ Health Perspect. 2008 Jul;116(7):976-80 PMID 18629324
Cites: Environ Health Perspect. 2012 Feb;120(2):303-8 PMID 21984531
Cites: Ann Hum Biol. 2006 Jul-Aug;33(4):401-14 PMID 17060065
Cites: J Pediatr. 2012 Jun;160(6):1044-9 PMID 22284921
Cites: Pediatrics. 1986 Mar;77(3):281-8 PMID 3951909
Cites: Environ Res. 2015 Jan;136:141-7 PMID 25460630
Cites: Environ Health Perspect. 2016 Nov;124(11):1801-1807 PMID 27187981
Cites: Int J Environ Res Public Health. 2016 Mar 25;13(4):358 PMID 27023578
PubMed ID
28599171 View in PubMed
Less detail

Predictors of serum chlorinated pesticide concentrations among prepubertal Russian boys.

https://arctichealth.org/en/permalink/ahliterature107968
Source
Environ Health Perspect. 2013 Nov-Dec;121(11-12):1372-7
Publication Type
Article
Author
Thuy Lam
Paige L Williams
Jane S Burns
Oleg Sergeyev
Susan A Korrick
Mary M Lee
Linda S Birnbaum
Boris Revich
Larisa M Altshul
Donald G Patterson
Wayman E Turner
Russ Hauser
Author Affiliation
Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, and.
Source
Environ Health Perspect. 2013 Nov-Dec;121(11-12):1372-7
Language
English
Publication Type
Article
Keywords
Animals
Body mass index
Breast Feeding - statistics & numerical data
Child
Cohort Studies
Dichlorodiphenyl Dichloroethylene
Diet - statistics & numerical data
Educational Status
Environmental Exposure - analysis
Geography
Hexachlorobenzene
Humans
Hydrocarbons, Chlorinated - blood
Lindane
Linear Models
Male
Milk - statistics & numerical data
Pesticides - blood
Prospective Studies
Questionnaires
Russia - epidemiology
Abstract
Few studies have evaluated predictors of childhood exposure to organochlorine pesticides (OCPs), a class of lipophilic persistent chemicals.
Our goal was to identify predictors of serum OCP concentrations-hexachlorobenzene (HCB), ?-hexachlorocyclohexane (?-HCH), and p,p-dichlorodiphenyldichloroethylene (p,p?-DDE)-among boys in Chapaevsk, Russia.
Between 2003 and 2005, 499 boys 8-9 years of age were recruited in a prospective cohort. The initial study visit included a physical examination; blood collection; health, lifestyle, and food-frequency questionnaires; and determination of residential distance from a local factory complex that produced HCB and ?-HCH. Fasting serum samples were analyzed for OCPs at the U.S. Centers for Disease Control and Prevention. General linear regression models were used to identify predictors of the boys' serum HCB, ?-HCH, and p,p?-DDE concentrations.
Among 355 boys with OCP measurements, median serum HCB, ?-HCH, and p,p?-DDE concentrations were 158, 167, and 284 ng/g lipid, respectively. Lower body mass index, longer breastfeeding duration, and local dairy consumption were associated with higher concentrations of OCPs. Boys who lived 3 years in Chapaevsk predicted higher ?-HCH concentrations, and having parents who lacked a high school education predicted higher p,p?-DDE concentrations.
Among this cohort of prepubertal Russian boys, predictors of serum OCPs included consumption of local dairy products, longer local residence, and residential proximity to the local factory complex.
Notes
Cites: Environ Int. 2012 Jan;38(1):54-6121982033
Cites: Environ Int. 2011 Oct;37(7):1226-3521683445
Cites: Environ Res. 2000 Nov;84(3):290-30211097803
Cites: Chemosphere. 2001 May-Jun;43(4-7):895-90111372882
Cites: Hum Reprod Update. 2001 May-Jun;7(3):248-6411392371
Cites: Pediatr Res. 2001 Sep;50(3):331-611518819
Cites: J Expo Anal Environ Epidemiol. 2002 Nov;12(6):409-1712415489
Cites: Int J Occup Med Environ Health. 2003;16(1):7-2012705713
Cites: J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Aug 25;794(1):137-4812888206
Cites: J Occup Environ Med. 2003 Aug;45(8):781-812915779
Cites: Environ Health Perspect. 2004 Feb;112(2):257-6514754581
Cites: Anal Chem. 2004 Apr 1;76(7):1921-715053652
Cites: Toxicol Appl Pharmacol. 1977 May;40(2):227-39877958
Cites: Environ Res. 1979 Dec;20(2):225-66121077
Cites: Am J Public Health. 1986 Feb;76(2):172-73080910
Cites: Fundam Appl Toxicol. 1986 May;6(4):697-7122423406
Cites: Arch Environ Contam Toxicol. 1989 Jul-Aug;18(4):495-5002505694
Cites: IARC Monogr Eval Carcinog Risks Hum. 1991;53:179-2491842579
Cites: J Toxicol Environ Health. 1997 May;51(1):23-349169059
Cites: Vopr Pitan. 1998;(3):8-139752664
Cites: Environ Health Perspect. 1999 Jan;107(1):45-519872716
Cites: Environ Health. 2005;4(1):815918907
Cites: Cancer Epidemiol Biomarkers Prev. 2005 Sep;14(9):2224-3616172236
Cites: Sci Total Environ. 2005 Oct 15;349(1-3):1-4416005495
Cites: Chemosphere. 2006 Feb;62(7):1167-8216169054
Cites: Food Chem Toxicol. 2006 Sep;44(9):1597-60616730400
Cites: Environ Health Perspect. 2006 Jul;114(7):1092-816835064
Cites: Chemosphere. 2006 Oct;65(3):410-816530805
Cites: Environ Int. 2007 Feb;33(2):157-6317055057
Cites: Bull World Health Organ. 2007 Sep;85(9):660-718026621
Cites: Environ Int. 2009 Jan;35(1):27-3218653237
Cites: Environ Sci Technol. 2009 Feb 15;43(4):1211-819320182
Cites: Environ Res. 2009 May;109(4):495-50219278675
Cites: Environ Health Perspect. 2009 Oct;117(10):1593-920019911
Cites: Environ Sci Technol. 2010 Jul 15;44(14):5633-4020578718
Cites: Biomed Environ Sci. 2010 Jun;23(3):230-320708503
Cites: J Expo Sci Environ Epidemiol. 2011 May-Jun;21(3):224-3320197795
Cites: Chemosphere. 2011 May;83(10):1374-8221458024
Cites: Sci Total Environ. 1999 Oct 1;239(1-3):151-6310636769
PubMed ID
23955839 View in PubMed
Less detail

Predictors of serum dioxin, furan, and PCB concentrations among women from Chapaevsk, Russia.

https://arctichealth.org/en/permalink/ahliterature142606
Source
Environ Sci Technol. 2010 Jul 15;44(14):5633-40
Publication Type
Article
Date
Jul-15-2010
Author
Olivier Humblet
Paige L Williams
Susan A Korrick
Oleg Sergeyev
Claude Emond
Linda S Birnbaum
Jane S Burns
Larisa Altshul
Donald G Patterson
Wayman E Turner
Mary M Lee
Boris Revich
Russ Hauser
Author Affiliation
Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA.
Source
Environ Sci Technol. 2010 Jul 15;44(14):5633-40
Date
Jul-15-2010
Language
English
Publication Type
Article
Keywords
Adult
Aging
Dioxins - blood
Environmental Pollutants - chemistry
Female
Furans - blood
Humans
Middle Aged
Multivariate Analysis
Polychlorinated biphenyls - blood
Russia
Young Adult
Abstract
Dioxins, furans, and polychlorinated biphenyls (PCBs) are persistent and bioaccumulative toxic chemicals that are ubiquitous in the environment. We assessed predictors of their serum concentrations among women living in a Russian town contaminated by past industrial activity. Blood samples from 446 mothers aged 23-52 years were collected between 2003-2005 as part of the Russian Children's Study. Serum dioxin, furan, and PCB concentrations were quantified using high-resolution gas chromatography-mass spectrometry. Potential determinants of exposure were collected through interviews. Multivariate linear regression models were used to identify predictors of serum concentrations and toxic equivalencies (TEQs). The median total PCB concentrations and total TEQs were 260 ng/g lipid and 25 pg TEQ/g lipid, respectively. In multivariate analyses, both total PCB concentrations and total TEQs increased significantly with age, residential proximity to a local chemical plant, duration of local farming, and consumption of local beef. Both decreased with longer breastfeeding, recent increases in body mass index, and later blood draw date. These demographic and lifestyle predictors showed generally similar associations with the various measures of serum dioxins, furans, and PCBs.
Notes
Cites: Environ Health Perspect. 2009 Mar;117(3):417-2519337517
Cites: Environ Sci Technol. 2009 Feb 15;43(4):1211-819320182
Cites: Environ Health Perspect. 2009 Jan;117(1):7-1619165381
Cites: Environ Int. 2008 Oct;34(7):1050-6118440070
Cites: Chemosphere. 2008 Aug;73(1 Suppl):S261-7718511103
Cites: Chemosphere. 2008 Aug;73(1):30-718632132
Cites: Diabetes Care. 2008 Aug;31(8):1574-918487481
Cites: Am J Epidemiol. 2008 Apr 1;167(7):847-5818192277
Cites: J Occup Environ Med. 2008 Mar;50(3):330-4018332783
Cites: Chemosphere. 2007 Jun;68(5):915-2017346770
Cites: Mol Nutr Food Res. 2006 Oct;50(10):922-3317009213
Cites: Toxicol Sci. 2006 Oct;93(2):223-4116829543
Cites: Cancer Epidemiol Biomarkers Prev. 2005 Sep;14(9):2224-3616172236
Cites: Epidemiology. 2000 Jan;11(1):44-810615842
Cites: Environ Health. 2005;4(1):815918907
Cites: Arch Environ Health. 2000 May-Jun;55(3):195-20010908103
Cites: Chemosphere. 2001 May-Jun;43(4-7):595-60011372843
Cites: Chemosphere. 2001 May-Jun;43(4-7):951-6611372889
Cites: J Pediatr Endocrinol Metab. 2003 Feb;16(2):169-7812713253
Cites: Ann Epidemiol. 2003 May;13(5):335-4312821272
Cites: Anal Chem. 1987 Aug 1;59(15):2000-53631519
Cites: IARC Monogr Eval Carcinog Risks Hum Suppl. 1987;7:1-4403482203
Cites: Arch Environ Contam Toxicol. 1989 Jul-Aug;18(4):495-5002505694
Cites: Sci Total Environ. 1994 Jul 11;151(2):131-528073264
Cites: J Toxicol Environ Health. 1996 Mar;47(4):363-788600289
Cites: Pediatrics. 2010 May;125(5):e1088-9620368318
Cites: Chemosphere. 2005 Aug;60(7):898-90615992596
Cites: Environ Health Perspect. 2009 Oct;117(10):1593-920019911
Cites: Environ Health Perspect. 2009 May;117(5):818-2419479027
PubMed ID
20578718 View in PubMed
Less detail

Serum concentrations of organochlorine pesticides and growth among Russian boys.

https://arctichealth.org/en/permalink/ahliterature130616
Source
Environ Health Perspect. 2012 Feb;120(2):303-8
Publication Type
Article
Date
Feb-2012
Author
Jane S Burns
Paige L Williams
Oleg Sergeyev
Susan A Korrick
Mary M Lee
Boris Revich
Larisa Altshul
Julie T Del Prato
Olivier Humblet
Donald G Patterson
Wayman E Turner
Mikhail Starovoytov
Russ Hauser
Author Affiliation
Environmental and Occupational Medicine and Epidemiology Program, 665 Huntington Ave., Building I, Room 1404E, Boston, MA 02115 USA. jburns@hsph.harvard.edu
Source
Environ Health Perspect. 2012 Feb;120(2):303-8
Date
Feb-2012
Language
English
Publication Type
Article
Keywords
Body Height - drug effects
Body mass index
Child
Child Development
Environmental Exposure
Follow-Up Studies
Humans
Hydrocarbons, Chlorinated - blood - toxicity
Male
Multivariate Analysis
Pesticides - blood - toxicity
Prospective Studies
Russia
Sensitivity and specificity
Abstract
Limited human data suggest an association of organochlorine pesticides (OCPs) with adverse effects on children's growth.
We evaluated the associations of OCPs with longitudinally assessed growth among peripubertal boys from a Russian cohort with high environmental OCP levels.
A cohort of 499 boys enrolled in the Russian Children's Study between 2003 and 2005 at 8-9 years of age were followed prospectively for 4 years. At study entry, 350 boys had serum OCPs measured. Physical examinations were conducted at entry and annually. The longitudinal associations of serum OCPs with annual measurements of body mass index (BMI), height, and height velocity were examined by multivariate mixed-effects regression models for repeated measures, controlling for potential confounders.
Among the 350 boys with OCP measurements, median serum hexachlorobenzene (HCB), ?-hexachlorocyclohexane (?HCH), and p,p?-dichlorodiphenyldichloroethylene (p,p?-DDE) concentrations were 159 ng/g lipid, 168 ng/g lipid, and 287 ng/g lipid, respectively. Age-adjusted BMI and height z-scores generally fell within the normal range per World Health Organization standards at entry and during follow-up. However, in adjusted models, boys with higher serum HCB, ?HCH, and p,p?-DDE had significantly lower mean [95% confidence interval (CI)] BMI z-scores, by -0.84 (-1.23, -0.46), -1.32 (-1.70, -0.95), and -1.37 (-1.75, -0.98), respectively, for the highest versus lowest quintile. In addition, the highest quintile of p,p?-DDE was associated with a significantly lower mean (95% CI) height z-score, by -0.69 (-1.00, -0.39) than that of the lowest quintile.
Serum OCP concentrations measured at 8-9 years of age were associated with reduced growth, particularly reduced BMI, during the peripubertal period, which may affect attainment of optimal adult body mass and height.
Notes
Cites: Occup Environ Med. 2009 Mar;66(3):143-919060027
Cites: Environ Health Perspect. 2011 Feb;119(2):272-820923745
Cites: Environ Res. 2009 Jul;109(5):559-6619410245
Cites: Environ Health Perspect. 2008 Jul;116(7):976-8018629324
Cites: Acta Paediatr. 2008 Oct;97(10):1465-918665907
Cites: Chemosphere. 2008 Oct;73(6):907-1418718632
Cites: Cancer Epidemiol Biomarkers Prev. 2000 Mar;9(3):271-710750665
Cites: J Pediatr. 2000 Apr;136(4):490-610753247
Cites: Pediatr Res. 2001 Sep;50(3):331-611518819
Cites: J Pediatr. 2002 Jan;140(1):33-911815761
Cites: Pediatr Res. 2002 Aug;52(2):163-712149491
Cites: Int Arch Occup Environ Health. 2003 Feb;76(1):75-8012592586
Cites: J Pediatr Endocrinol Metab. 2003 Feb;16(2):169-7812713253
Cites: J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Aug 25;794(1):137-4812888206
Cites: Environ Health Perspect. 2004 Feb;112(2):257-6514754581
Cites: Anal Chem. 2004 Apr 1;76(7):1921-715053652
Cites: Arch Dis Child. 1976 Mar;51(3):170-9952550
Cites: J Toxicol Environ Health. 1994 Jan;41(1):83-938277528
Cites: J Mol Med (Berl). 1997 Mar;75(3):198-2079106076
Cites: Prev Med. 1997 Nov-Dec;26(6):808-169388792
Cites: Vopr Pitan. 1998;(3):8-139752664
Cites: Acta Paediatr. 1998 Sep;87(9):991-59764896
Cites: Environ Health Perspect. 1999 Jan;107(1):45-519872716
Cites: Environ Res. 2005 Feb;97(2):149-6215533331
Cites: Environ Health Perspect. 2004 Dec;112(17):1761-715579424
Cites: Chemosphere. 2005 Mar;58(9):1185-20115667840
Cites: Environ Health. 2005;4(1):815918907
Cites: Cancer Epidemiol Biomarkers Prev. 2005 Sep;14(9):2224-3616172236
Cites: Am J Epidemiol. 2005 Oct 15;162(8):726-816120697
Cites: Environ Sci Technol. 2006 Mar 1;40(5):1420-616568751
Cites: Food Chem Toxicol. 2006 Sep;44(9):1597-60616730400
Cites: Int J Epidemiol. 2006 Aug;35(4):853-816606643
Cites: Epidemiology. 2006 Nov;17(6):692-70017003683
Cites: Pediatr Res. 2007 Feb;61(2):243-5017237730
Cites: Bull World Health Organ. 2007 Sep;85(9):660-718026621
Cites: J Food Prot. 2008 Oct;71(10):2148-5218939770
Cites: Toxicol Lett. 2008 Dec 15;183(1-3):65-7118992306
Cites: Environ Health Perspect. 2009 Jan;117(1):122-619165398
Cites: Vital Health Stat 11. 2009 Apr;(249):1-6819642512
Cites: Environ Health Perspect. 2009 Sep;117(9):1359-6719750098
Cites: Best Pract Res Clin Endocrinol Metab. 2009 Dec;23(6):801-1319942155
Cites: Environ Health Perspect. 2009 Oct;117(10):1593-920019911
Cites: Growth Horm IGF Res. 2010 Feb;20(1):63-719699127
Cites: Environ Int. 2010 May;36(4):330-720181395
Cites: Paediatr Perinat Epidemiol. 2010 May;24(3):262-7120415756
Cites: Pediatrics. 2010 May;125(5):e1088-9620368318
Cites: Environ Res. 2010 Aug;110(6):595-60320566194
Cites: PLoS Med. 2010;7(8). pii: e1000324. doi: 10.1371/journal.pmed.100032420711482
Cites: Pediatrics. 2011 Jan;127(1):e59-6821187307
Cites: Environ Sci Technol. 2009 Feb 15;43(4):1211-819320182
PubMed ID
21984531 View in PubMed
Less detail

Dioxin and polychlorinated biphenyl concentrations in mother's serum and the timing of pubertal onset in sons.

https://arctichealth.org/en/permalink/ahliterature130773
Source
Epidemiology. 2011 Nov;22(6):827-35
Publication Type
Article
Date
Nov-2011
Author
Olivier Humblet
Paige L Williams
Susan A Korrick
Oleg Sergeyev
Claude Emond
Linda S Birnbaum
Jane S Burns
Larisa Altshul
Donald G Patterson
Wayman E Turner
Mary M Lee
Boris Revich
Russ Hauser
Author Affiliation
Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA.
Source
Epidemiology. 2011 Nov;22(6):827-35
Date
Nov-2011
Language
English
Publication Type
Article
Keywords
Adult
Age Factors
Child
Dioxins - adverse effects - blood
Female
Gestational Age
Humans
Lead - adverse effects - blood
Male
Multivariate Analysis
Polychlorinated biphenyls - adverse effects - blood
Pregnancy
Prenatal Exposure Delayed Effects - blood
Proportional Hazards Models
Prospective Studies
Puberty - drug effects
Russia - epidemiology
Young Adult
Abstract
Animal studies have demonstrated that timing of pubertal onset can be altered by prenatal exposure to dioxins or polychlorinated biphenyls (PCBs), but studies of human populations have been quite limited.
We assessed the association between maternal serum concentrations of dioxins and PCBs and the sons' age of pubertal onset in a prospective cohort of 489 mother-son pairs from Chapaevsk, Russia, a town contaminated with these chemicals during past industrial activity. The boys were recruited at ages 8 to 9 years, and 4 years of annual follow-up data were included in the analysis. Serum samples were collected at enrollment from both mothers and sons for measurement of dioxin and PCB concentrations using high-resolution mass spectrometry. The sons' pubertal onset--defined as pubertal stage 2 or higher for genitalia (G) or pubic hair (P), or testicular volume >3 mL--was assessed annually by the same physician.
In multivariate Cox models, elevated maternal serum PCBs were associated with earlier pubertal onset defined by stage G2 or higher (4th quartile hazard ratio = 1.7 [95% confidence interval = 1.1- 2.5]), but not for stage P2 or higher or for testicular volume >3 mL. Maternal serum concentrations of dioxin toxic equivalents were not consistently associated with the sons' pubertal onset, although a dose-related delay in pubertal onset (only for G2 or higher) was seen among boys who breast-fed for 6 months or more.
Maternal PCB serum concentrations measured 8 or 9 years after sons' births--which may reflect sons' prenatal and early-life exposures--were associated with acceleration in some, but not all, measures of pubertal onset.
Notes
Cites: Horm Res. 2002;57 Suppl 2:19-3012065922
Cites: J Expo Sci Environ Epidemiol. 2011 May-Jun;21(3):224-3320197795
Cites: Pediatrics. 2011 Jan;127(1):e59-6821187307
Cites: Epidemiology. 2004 Sep;15(5):615-2515308962
Cites: Environ Health Perspect. 2011 Sep;119(9):1339-4421527364
Cites: Environ Health Perspect. 2011 May;119(5):713-821262597
Cites: J Pediatr. 2000 Apr;136(4):490-610753247
Cites: J Vet Med Sci. 2001 Jan;63(1):5-911217063
Cites: Chemosphere. 2001 May-Jun;43(4-7):951-6611372889
Cites: Eur J Endocrinol. 2002 Mar;146(3):357-6311888842
Cites: J Pediatr Endocrinol Metab. 2003 Feb;16(2):169-7812713253
Cites: Toxicol Sci. 2003 Jul;74(1):182-9112730615
Cites: Arch Dis Child. 1970 Feb;45(239):13-235440182
Cites: Arch Dis Child. 1976 Mar;51(3):170-9952550
Cites: Biol Reprod. 1977 Sep;17(2):298-303889997
Cites: Anal Chem. 1987 Aug 1;59(15):2000-53631519
Cites: Arch Environ Contam Toxicol. 1989 Jul-Aug;18(4):495-5002505694
Cites: Arch Environ Contam Toxicol. 1993 May;24(4):504-128507107
Cites: Toxicol Appl Pharmacol. 1995 Mar;131(1):108-187878665
Cites: Toxicol Appl Pharmacol. 1996 Jan;136(1):112-78560463
Cites: Environ Health Perspect. 1997 Jan;105(1):13-49074863
Cites: Prev Med. 1997 Nov-Dec;26(6):808-169388792
Cites: Vopr Pitan. 1998;(3):8-139752664
Cites: Toxicol Ind Health. 1999 Jan-Mar;15(1-2):65-7910188192
Cites: New Dir Child Adolesc Dev. 2004 Winter;(106):23-3415707160
Cites: Environ Health. 2005;4(1):815918907
Cites: Mol Cell Endocrinol. 2006 Jul 25;254-255:154-6216765510
Cites: Toxicol Sci. 2006 Oct;93(2):223-4116829543
Cites: Toxicol Sci. 2007 Sep;99(1):224-3317545211
Cites: Rev Endocr Metab Disord. 2007 Jun;8(2):143-5917674209
Cites: Bull World Health Organ. 2007 Sep;85(9):660-718026621
Cites: Environ Health Perspect. 2008 Jan;116(1):70-718197302
Cites: Environ Sci Technol. 2009 Feb 15;43(4):1211-819320182
Cites: Environ Health Perspect. 2009 Mar;117(3):417-2519337517
Cites: Environ Health Perspect. 2009 Oct;117(10):1593-920019911
Cites: Pediatrics. 2010 May;125(5):e1088-9620368318
Cites: Clin Endocrinol (Oxf). 2010 Jun;72(6):731-719912242
Cites: Environ Sci Technol. 2010 Jul 15;44(14):5633-4020578718
PubMed ID
21968773 View in PubMed
Less detail

Temporal trends in serum concentrations of polychlorinated dioxins, furans, and PCBs among adult women living in Chapaevsk, Russia: a longitudinal study from 2000 to 2009.

https://arctichealth.org/en/permalink/ahliterature133514
Source
Environ Health. 2011;10:62
Publication Type
Article
Date
2011
Author
Olivier Humblet
Oleg Sergeyev
Larisa Altshul
Susan A Korrick
Paige L Williams
Claude Emond
Linda S Birnbaum
Jane S Burns
Mary M Lee
Boris Revich
Andrey Shelepchikov
Denis Feshin
Russ Hauser
Author Affiliation
Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA.
Source
Environ Health. 2011;10:62
Date
2011
Language
English
Publication Type
Article
Keywords
Adult
Benzofurans - blood
Dioxins - blood
Environmental Exposure
Environmental pollutants - blood
Female
Gas Chromatography-Mass Spectrometry
Humans
Longitudinal Studies
Polychlorinated biphenyls - blood
Russia
Young Adult
Abstract
The present study assessed the temporal trend in serum concentrations of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls (PCBs) among residents of a Russian town where levels of these chemicals are elevated due to prior industrial activity.
Two serum samples were collected from eight adult women (in 2000 and 2009), and analyzed with gas chromatography-high-resolution mass spectrometry.
The average total toxic equivalency (TEQ) decreased by 30% (from 36 to 25 pg/g lipid), and the average sum of PCB congeners decreased by 19% (from 291 to 211 ng/g lipid). Total TEQs decreased for seven of the eight women, and the sum of PCBs decreased for six of eight women. During this nine year period, larger decreases in serum TEQs and PCBs were found in women with greater increases in body mass index.
This study provides suggestive evidence that average serum concentrations of dioxins, furans, and PCBs are decreasing over time among residents of this town.
Notes
Cites: Environ Health Perspect. 2009 Oct;117(10):1593-920019911
Cites: Chemosphere. 2009 Oct;77(5):640-5119733382
Cites: Chemosphere. 2001 May-Jun;43(4-7):595-60011372843
Cites: Chemosphere. 2001 May-Jun;43(4-7):951-6611372889
Cites: Sci Total Environ. 2002 Apr 8;288(1-2):81-9512013550
Cites: Arch Environ Contam Toxicol. 1989 Jul-Aug;18(4):495-5002505694
Cites: Sci Total Environ. 1994 Jul 11;151(2):131-528073264
Cites: Chemosphere. 2005 Aug;60(7):898-90615992596
Cites: Environ Health. 2005;4(1):815918907
Cites: Cancer Epidemiol Biomarkers Prev. 2005 Sep;14(9):2224-3616172236
Cites: Environ Res. 2006 Jul;101(3):419-2816445906
Cites: Toxicol Sci. 2006 Oct;93(2):223-4116829543
Cites: Mol Nutr Food Res. 2006 Oct;50(10):922-3317009213
Cites: Chemosphere. 2008 Aug;73(1 Suppl):S261-7718511103
Cites: Environ Int. 2008 Oct;34(7):1050-6118440070
Cites: Environ Sci Technol. 2009 Feb 15;43(4):1211-819320182
Cites: Environ Health Perspect. 2009 Mar;117(3):417-2519337517
Cites: Environ Sci Technol. 2010 Jul 15;44(14):5633-4020578718
PubMed ID
21696632 View in PubMed
Less detail

The association of peripubertal serum concentrations of organochlorine chemicals and blood lead with growth and pubertal development in a longitudinal cohort of boys: a review of published results from the Russian Children's Study.

https://arctichealth.org/en/permalink/ahliterature283496
Source
Rev Environ Health. 2017 Mar 01;32(1-2):83-92
Publication Type
Article
Date
Mar-01-2017
Author
Oleg Sergeyev
Jane S Burns
Paige L Williams
Susan A Korrick
Mary M Lee
Boris Revich
Russ Hauser
Source
Rev Environ Health. 2017 Mar 01;32(1-2):83-92
Date
Mar-01-2017
Language
English
Publication Type
Article
Keywords
Adolescent
Child
Dioxins and Dioxin-like Compounds - blood
Endocrine Disruptors - blood
Environmental Exposure
Environmental pollutants - blood
Furans - blood
Humans
Hydrocarbons, Chlorinated - blood
Lead - blood
Longitudinal Studies
Male
Prospective Studies
Russia
Sexual Maturation - drug effects
Young Adult
Abstract
Organochlorine chemicals and lead are environmental exposures that have endocrine disrupting properties (EDCs) which interfere with many aspects of hormone action. Childhood and adolescence are windows of susceptibility for adverse health effects of EDCs. Our ongoing study, the Russian Children's Study (RCS), is one of the few longitudinal studies investigating the impact of EDCs on growth and puberty in boys. It is conducted in the historically contaminated city of Chapaevsk, in the Samara region. The study focuses on evaluating the associations of persistent organochlorine chemicals and lead with growth and pubertal timing. At enrollment in 2003-2005, we collected blood from 516 boys at ages 8-9 years to measure dioxins, furans, polychlorinated biphenyls (PCBs), chlorinated pesticides and lead. At enrollment and at annual visits through the ages of 18-19 years, a physician performed physical examinations that included pubertal staging and testicular volume measurements. We review the history of Chapaevsk as a research site and summarize published RCS data on the association of peripubertal serum concentrations of organochlorines and blood lead levels with growth, pubertal onset and sexual maturity. Overall, we found that persistent organochlorines and lead negatively affected growth during puberty. Our results also suggest that total toxic equivalents (TEQs), dioxin-like compounds, organochlorine pesticides and lead may delay, while nondioxin-like-PCBs may advance, the timing of male puberty. These findings promoted remediation programs in Chapaevsk, with improvement in health indicators, resulting in Chapaevsk being designated a member of the World Health Organization (WHO) network "Healthy Cities" in 2015.
PubMed ID
28231067 View in PubMed
Less detail

19 records – page 1 of 1.