Skip header and navigation

Refine By

44 records – page 1 of 5.

Arctic Ocean sea ice drift origin derived from artificial radionuclides

https://arctichealth.org/en/permalink/ahliterature102087
Source
Science of the Total Environment. 2010 Jul;408(16):3349-3358
Publication Type
Article
Date
Jul-2010
Author
Cámara-Mor, P
Masqué, P
Garcia-Orellana, J
Cochran, JK
Mas, JL
Chamizo, E
Hanfland, C
Author Affiliation
Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, Bellaterra, Spain
Source
Science of the Total Environment. 2010 Jul;408(16):3349-3358
Date
Jul-2010
Language
English
Publication Type
Article
Keywords
Arctic Regions
Oceans and Seas
Radioisotopes--analysis
Sea ice
Abstract
Since the 1950s, nuclear weapon testing and releases from the nuclear industry have introduced anthropogenic radionuclides into the sea, and in many instances their ultimate fate are the bottom sediments. The Arctic Ocean is one of the most polluted in this respect, because, in addition to global fallout, it is impacted by regional fallout from nuclear weapon testing, and indirectly by releases from nuclear reprocessing facilities and nuclear accidents. Sea-ice formed in the shallow continental shelves incorporate sediments with variable concentrations of anthropogenic radionuclides that are transported through the Arctic Ocean and are finally released in the melting areas. In this work, we present the results of anthropogenic radionuclide analyses of sea-ice sediments (SIS) collected on five cruises from different Arctic regions and combine them with a database including prior measurements of these radionuclides in SIS. The distribution of (137)Cs and (239,240)Pu activities and the (240)Pu/(239)Pu atom ratio in SIS showed geographical differences, in agreement with the two main sea ice drift patterns derived from the mean field of sea-ice motion, the Transpolar Drift and Beaufort Gyre, with the Fram Strait as the main ablation area. A direct comparison of data measured in SIS samples against those reported for the potential source regions permits identification of the regions from which sea ice incorporates sediments. The (240)Pu/(239)Pu atom ratio in SIS may be used to discern the origin of sea ice from the Kara-Laptev Sea and the Alaskan shelf. However, if the (240)Pu/(239)Pu atom ratio is similar to global fallout, it does not provide a unique diagnostic indicator of the source area, and in such cases, the source of SIS can be constrained with a combination of the (137)Cs and (239,240)Pu activities. Therefore, these anthropogenic radionuclides can be used in many instances to determine the geographical source area of sea-ice.
Less detail

Arctic sea ice retreat in 2007 follows thinning trend

https://arctichealth.org/en/permalink/ahliterature276008
Source
Journal of Climate. 2009 Jan;22(1):165-176
Publication Type
Article
Date
Jan-2009
Author
Lindsay, RW
Zhang, J
Schweiger, A
Steele, M
Stern, H
Author Affiliation
Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington
Source
Journal of Climate. 2009 Jan;22(1):165-176
Date
Jan-2009
Language
English
Publication Type
Article
Keywords
Arctic Ocean
Sea ice
Abstract
The minimum of Arctic sea ice extent in the summer of 2007 was unprecedented in the historical record. A coupled ice-ocean model is used to determine the state of the ice and ocean over the past 29 years to investigate the causes of this ice extent minimum within a historical perspective. It is found that even though the 2007 ice extent was strongly anomalous, the loss in total ice mass was not. Rather, the 2007 ice mass loss is largely consistent with a steady decrease in ice thickness that began in 1987. Since then, the simulated mean September ice thickness within the Arctic Ocean has declined from 3.7 to 2.6 m at a rate of -0.57 m/decade. Both the area coverage of thin ice at the beginning of the melt season and the total volume of ice lost in the summer have been steadily increasing. The combined impact of these two trends caused a large reduction in the September mean ice concentration in the Arctic Ocean. This created conditions during the summer of 2007 that allowed persistent winds to push the remaining ice from the Pacific side to the Atlantic side of the basin and more than usual into the Greenland Sea. This exposed large areas of open water, resulting in the record ice extent anomaly.
Less detail

Assessment of the potential health impacts of climate change in Alaska

https://arctichealth.org/en/permalink/ahliterature287905
Source
Bulletin. State of Alaska Epidemiology. Recommendations and Reports. 2018 Jan 8; 20(1)
Publication Type
Article
Date
2018
  1 document  
Author
Yoder, Sarah
Author Affiliation
Alaska Section of Epidemiology
Source
Bulletin. State of Alaska Epidemiology. Recommendations and Reports. 2018 Jan 8; 20(1)
Date
2018
Language
English
Geographic Location
U.S.
Publication Type
Article
Digital File Format
Text - PDF
Physical Holding
Alaska Medical Library
Keywords
Alaska
Climate change
Sea levels
Permafrost
Glaciers
Weather patterns
Sea ice
Temperature
Subsistence
Infectious disease
Sanitation
Health services
Abstract
Background: Over the past century, the air and water temperatures in Alaska have warmed considerably faster than in the rest of the United States. Because Alaska is the only Arctic state in the Nation, Alaskans are likely to face some climate change challenges that will be different than those encountered in other states. For example, permafrost currently underlies 80% of Alaska and provides a stable foundation for the physical infrastructure of many Alaska communities. As has already been seen in numerous villages, the groundcover that overlies permafrost is vulnerable to sinking or caving if the permafrost thaws, resulting in costly damage to physical infrastructure. The reliance on subsistence resources is another contrast to many other states. Many Alaskans depend upon subsistence harvests of fish and wildlife resources for food and to support their way of life. Some Alaskans report that the changing environment has already impacted their traditional practices. Many past efforts to characterize the potential impacts of climate change in Alaska have focused primarily on describing expected changes to the physical environment and the ecosystem, and less on describing how these changes, in addition to changes in animal and environmental health, could affect human health. Thus, a careful analysis of how climate change could affect the health of people living in Alaska is warranted. The Alaska Division of Public Health has conducted such an assessment using the Health Impact Assessment (HIA) framework; the assessment is based on the current National Climate Assessment (NCA) predictions for Alaska. The document is intended to provide a broad overview of the potential adverse human health impacts of climate change in Alaska and to present examples of adaptation strategies for communities to consider when planning their own response efforts. This document does not present a new model for climate change in Alaska, and it does not offer a critique of the NCA predictions for Alaska.
Documents

AssessmentofthePotentialHealthImpactsof.pdf

Read PDF Online Download PDF
Less detail

Atmospheric inversion strength over polar oceans in winter regulated by sea ice

https://arctichealth.org/en/permalink/ahliterature276011
Source
Climate Dynamics. 2011 Mar;36(5):945-955
Publication Type
Article
Date
Mar-2011
Author
Pavelsky, TM
Boé, J
Hall, A
Fetzer, EJ
Source
Climate Dynamics. 2011 Mar;36(5):945-955
Date
Mar-2011
Language
English
Publication Type
Article
Keywords
AIRS
Antarctic
Arctic
Sea ice
Temperature inversion
Abstract
Low-level temperature inversions are a common feature of the wintertime troposphere in the Arctic and Antarctic. Inversion strength plays an important role in regulating atmospheric processes including air pollution, ozone destruction, cloud formation, and negative longwave feedback mechanisms that shape polar climate response to anthropogenic forcing. The Atmospheric Infrared Sounder (AIRS) instrument provides reliable measures of spatial patterns in mean wintertime inversion strength when compared with available radiosonde observations and reanalysis products. Here, we examine the influence of sea ice concentration on inversion strength in the Arctic and Antarctic. Correlation of inversion strength with mean annual sea ice concentration, likely a surrogate for the effective thermal conductivity of the wintertime ice pack, yields strong, linear relationships in the Arctic (r = 0.88) and Antarctic (r = 0.86). We find a substantially greater (stronger) linear relationship between sea ice concentration and surface air temperature than with temperature at 850 hPa, lending credence to the idea that sea ice controls inversion strength through modulation of surface heat fluxes. As such, declines in sea ice in either hemisphere may imply weaker mean inversions in the future. Comparison of mean inversion strength in AIRS and global climate models (GCMs) suggests that many GCMs poorly characterize mean inversion strength at high latitudes.
Less detail

The boundary layer response to recent Arctic Sea ice loss and implications for high-latitude climate feedbacks

https://arctichealth.org/en/permalink/ahliterature276241
Source
Journal of Climate, 2011 Jan;24(2):428-447
Publication Type
Article
Date
Jan-2011
Author
Kay, JE
Raeder, K
Gettelman, A
Anderson, J
Author Affiliation
Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado
Source
Journal of Climate, 2011 Jan;24(2):428-447
Date
Jan-2011
Language
English
Publication Type
Article
Keywords
Arctic Ocean
Boundary Layer
Climate
Feedback
Sea ice
Abstract
This study documents and evaluates the boundary layer and energy budget response to record low 2007 sea ice extents in the Community Atmosphere Model version 4 (CAM4) using 1-day observationally constrained forecasts and 10-yr runs with a freely evolving atmosphere. While near-surface temperature and humidity are minimally affected by sea ice loss in July 2007 forecasts, near-surface stability decreases and atmospheric humidity increases aloft over newly open water in September 2007 forecasts. Ubiquitous low cloud increases over the newly ice-free Arctic Ocean are found in both the July 2007 and the September 2007 forecasts. In response to the 2007 sea ice loss, net surface [top of the atmosphere (TOA)] energy budgets change by +19.4 W m-2 (+21.0 W m-2) and -17.9 W m-2 (+1.4 W m-2) in the July 2007 and September 2007 forecasts, respectively. While many aspects of the forecasted response to sea ice loss are consistent with physical expectations and available observations, CAM4's ubiquitous July 2007 cloud increases over newly open water are not. The unrealistic cloud response results from the global application of parameterization designed to diagnose stratus clouds based on lower-tropospheric stability (CLDST). In the Arctic, the well-mixed boundary layer assumption implicit in CLDST is violated. Requiring a well-mixed boundary layer to diagnose stratus clouds improves the CAM4 cloud response to sea ice loss and increases July 2007 surface (TOA) energy budgets over newly open water by +11 W m-2 (+14.9 W m-2). Of importance to high-latitude climate feedbacks, unrealistic stratus cloud compensation for sea ice loss occurs only when stable and dry atmospheric conditions exist. Therefore, coupled climate projections that use CAM4 will underpredict Arctic sea ice loss only when dry and stable summer conditions occur.
Less detail

Brackish meltponds on Arctic sea ice--a new habitat for marine metazoans

https://arctichealth.org/en/permalink/ahliterature276012
Source
Polar Biology. 2011 Apr;34(4):603-608
Publication Type
Article
Date
Apr-2011
Author
Kramer, M
Kiko, R
Source
Polar Biology. 2011 Apr;34(4):603-608
Date
Apr-2011
Language
English
Publication Type
Article
Keywords
Arctic
Climate change
Marine metazoans
Meltponds
Sea ice
Sympagic meiofauna
Under-ice amphipods
Abstract
Meltponds on Arctic sea ice have previously been reported to be devoid of marine metazoans due to fresh-water conditions. The predominantly dark frequently also green and brownish meltponds observed in the central Arctic in summer 2007 hinted to brackish conditions and considerable amounts of algae, possibly making the habitat suitable for marine metazoans. Environmental conditions in meltponds as well as sympagic meiofauna in new ice covering pond surfaces and in rotten ice on the bottom of ponds were studied, applying modified techniques from sea-ice and under-ice research. Due to the very porous structure of the rotten ice, the meltponds were usually brackish to saline, providing living conditions very similar to sub-ice water. The new ice cover on the surface had similar characteristics as the bottom layer of level ice. The ponds were thus accessible to and inhabitable by metazoans. The new ice cover and the rotten ice were inhabited by various sympagic meiofauna taxa, predominantly ciliates, rotifers, acoels, nematodes and foraminiferans. Also, sympagic amphipods were found on the bottom of meltponds. We suggest that, in consequence of global warming, brackish and saline meltponds are becoming more frequent in the Arctic, providing a new habitat to marine metazoans.
Less detail
Source
Geophysical Research Letters. 2011 Feb;38(4):603-608
Publication Type
Article
Date
Feb-2011
Author
Wells, AJ
Wettlaufer, JS
Orszag, SA
Source
Geophysical Research Letters. 2011 Feb;38(4):603-608
Date
Feb-2011
Language
English
Publication Type
Article
Keywords
Brine
Sea ice
Abstract
It is well known that brine drainage from growing sea ice has a controlling influence on its mechanical, electromagnetic, biological and transport properties, and hence upon the buoyancy forcing and ecology in the polar oceans. When the ice has exceeded a critical thickness the drainage process is dominated by brine channels: liquid conduits extending through the ice. We describe a theoretical model for the drainage process using mushy layer theory which demonstrates that the brine channel spacing is governed by a selection mechanism that maximizes the rate of removal of stored potential energy, and hence the brine flux from the system. The fluid transport through the sea ice and hence the scaling laws for brine fluxes and brine channel spacings are predicted. Importantly, the resulting brine flux scaling is consistent with experimental data for growth from a fixed temperature surface, allowing all parameters in the scaling law to be determined. This provides an experimentally tested first principles derivation of a parameterization for brine fluxes from growing sea ice.
Less detail

The central role of diminishing sea ice in recent Arctic temperature amplification

https://arctichealth.org/en/permalink/ahliterature276242
Source
Nature. 2010 Apr;464(7293):1334-1337
Publication Type
Article
Date
Apr-29-2010
Author
Screen, JA
Simmonds, I
Source
Nature. 2010 Apr;464(7293):1334-1337
Date
Apr-29-2010
Language
English
Publication Type
Article
Keywords
Arctic
Feedbacks
Sea ice
Temperature amplification
Abstract
The rise in Arctic near-surface air temperatures has been almost twice as large as the global average in recent decades--a feature known as 'Arctic amplification'. Increased concentrations of atmospheric greenhouse gases have driven Arctic and global average warming; however, the underlying causes of Arctic amplification remain uncertain. The roles of reductions in snow and sea ice cover and changes in atmospheric and oceanic circulation, cloud cover and water vapour are still matters of debate. A better understanding of the processes responsible for the recent amplified warming is essential for assessing the likelihood, and impacts, of future rapid Arctic warming and sea ice loss. Here we show that the Arctic warming is strongest at the surface during most of the year and is primarily consistent with reductions in sea ice cover. Changes in cloud cover, in contrast, have not contributed strongly to recent warming. Increases in atmospheric water vapour content, partly in response to reduced sea ice cover, may have enhanced warming in the lower part of the atmosphere during summer and early autumn. We conclude that diminishing sea ice has had a leading role in recent Arctic temperature amplification. The findings reinforce suggestions that strong positive ice-temperature feedbacks have emerged in the Arctic, increasing the chances of further rapid warming and sea ice loss, and will probably affect polar ecosystems, ice-sheet mass balance and human activities in the Arctic.
Less detail

Changes in Arctic clouds during intervals of rapid sea ice loss

https://arctichealth.org/en/permalink/ahliterature276014
Source
Climate Dynamics. 2010 Apr;36(7): 1475-1489
Publication Type
Article
Date
Apr-2010
Author
Vavrus, S
Holland, MM
Bailey, DA
Source
Climate Dynamics. 2010 Apr;36(7): 1475-1489
Date
Apr-2010
Language
English
Publication Type
Article
Keywords
Abrupt change
Arctic clouds
CCSM
Rapid change
Sea ice
Abstract
We investigate the behavior of clouds during rapid sea ice loss events (RILEs) in the Arctic, as simulated by multiple ensemble projections of the 21st century in the Community Climate System Model (CCSM3). Trends in cloud properties and sea ice coverage during RILEs are compared with their secular trends between 2000 and 2049 during summer, autumn, and winter. The results suggest that clouds promote abrupt Arctic climate change during RILEs through increased (decreased) cloudiness in autumn (summer) relative to the changes over the first half of the 21st century. The trends in cloud characteristics (cloud amount, water content, and radiative forcing) during RILEs are most strongly and consistently an amplifying effect during autumn, the season in which RILEs account for the majority of the secular trends. The total cloud trends in every season are primarily due to low clouds, which show a more robust response than middle and high clouds across RILEs. Lead-lag correlations of monthly sea ice concentration and cloud cover during autumn reveal that the relationship between less ice and more clouds is enhanced during RILEs, but there is no evidence that either variable is leading the other. Given that Arctic cloud projections in CCSM3 are similar to those from other state-of-the-art GCMs and that observations show increased autumn cloudiness associated with the extreme 2007 and 2008 sea ice minima, this study suggests that the rapidly declining Arctic sea ice will be accentuated by changes in polar clouds.
Less detail

Changes in the climate of the Alaskan North Slope and the ice concentration of the adjacent Beaufort Sea

https://arctichealth.org/en/permalink/ahliterature276015
Source
Theoretical and Applied Climatology. 2010;99:67-74
Publication Type
Article
Date
2010
Author
Wendler, G
Shulski, M
Moore, B
Author Affiliation
Alaska Climate Research Center, Geophysical Institute, University of Alaska, Fairbanks, AK, USA
Source
Theoretical and Applied Climatology. 2010;99:67-74
Date
2010
Language
English
Publication Type
Article
Keywords
Alaska
Beaufort Sea
Climate change
North Slope
Sea ice
Abstract
A reliable data set of Arctic sea ice concentration based on satellite observations exists since 1972. Over this time period of 36 years western arctic temperatures have increased; the temperature rise varies significantly from one season to another and over multi-year time scales. In contrast to most of Alaska; however, on the North Slope the warming continued after 1976, when a circulation change occurred, as expressed in the PDO index. The mean temperature increase for Barrow over the 36-year period was 2.9°C, a very substantial change. Wind speeds increased by 18% over this time period; however, the increase were non-linear and showed a peak in the early 1990s. The sea ice extent of the Arctic Ocean has decreased strongly in recent years, and in September 2007 a new record in the amount of open water was recorded in the Western Arctic. We observed for the Southern Beaufort Sea a fairly steady increase in the mean annual amount of open water from 14% in 1972 to 39% in 2007, as deduced from the best linear fit. In late summer the decrease is much larger, and September has, on average, the least ice concentration (22%), followed by August (35%) and October (54%). The correlation coefficient between mean annual values of temperature and sea ice concentration was 0.84. On a monthly basis, the best correlation coefficient was found in October with 0.88. However, the relationship between winter temperatures and the sea ice break-up in summer was weak. While the temperature correlated well with the CO2 concentration (r=0.86), the correlation coefficient between CO2 and sea ice was lower (r=-0.68). After comparing the ice concentration with 17 circulation indices, the best relation was found with the Pacific Circulation Index (r=-0.59).
Less detail

44 records – page 1 of 5.